Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Ecol Evol ; 13(11): e10733, 2023 Nov.
Article in English | MEDLINE | ID: mdl-38034339

ABSTRACT

The management objectives of many protected areas must meet the dual mandates of protecting biodiversity while providing recreational opportunities. It is difficult to balance these mandates because it takes considerable effort to monitor both the status of biodiversity and impacts of recreation. Using detections from 45 camera traps deployed between July 2019 and September 2021, we assessed the potential impacts of recreation on spatial and temporal activity for 8 medium- and large-bodied terrestrial mammals in an isolated alpine protected area: Cathedral Provincial Park, British Columbia, Canada. We hypothesised that some wildlife perceive a level of threat from people, such that they avoid 'risky times' or 'risky places' associated with human activity. Other species may benefit from associating with people, be it through access to anthropogenic resource subsidies or filtering of competitors/predators that are more human-averse (i.e., human shield hypothesis). Specifically, we predicted that large carnivores would show the greatest segregation from people while mesocarnivores and ungulates would associate spatially with people. We found spatial co-occurrence between ungulates and recreation, consistent with the human shield hypothesis, but did not see the predicted negative relationship between larger carnivores and humans, except for coyotes (Canis latrans). Temporally, all species other than cougars (Puma concolor) had diel activity patterns significantly different from that of recreationists, suggesting potential displacement in the temporal niche. Wolves (Canis lupus) and mountain goats (Oreamnos americanus) showed shifts in temporal activity away from people on recreation trails relative to off-trail areas, providing further evidence of potential displacement. Our results highlight the importance of monitoring spatial and temporal interactions between recreation activities and wildlife communities, in order to ensure the effectiveness of protected areas in an era of increasing human impacts.

2.
Ecol Evol ; 13(9): e10464, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37720065

ABSTRACT

Outdoor recreation is widespread, with uncertain effects on wildlife. The human shield hypothesis (HSH) suggests that recreation could have differential effects on predators and prey, with predator avoidance of humans creating a spatial refuge 'shielding' prey from people. The generality of the HSH remains to be tested across larger scales, wherein human shielding may prove generalizable, or diminish with variability in ecological contexts. We combined data from 446 camera traps and 79,279 sampling days across 10 landscapes spanning 15,840 km2 in western Canada. We used hierarchical models to quantify the influence of recreation and landscape disturbance (roads, logging) on ungulate prey (moose, mule deer and elk) and carnivore (wolf, grizzly bear, cougar and black bear) site use. We found limited support for the HSH and strong responses to recreation at local but not larger spatial scales. Only mule deer showed positive but weak landscape-level responses to recreation. Elk were positively associated with local recreation while moose and mule deer responses were negative, contrary to HSH predictions. Mule deer showed a more complex interaction between recreation and land-use disturbance, with more negative responses to recreation at lower road density or higher logged areas. Contrary to HSH predictions, carnivores did not avoid recreation and grizzly bear site use was positively associated. We also tested the effects of roads and logging on temporal activity overlap between mule deer and recreation, expecting deer to minimize interaction with humans by partitioning time in areas subject to more habitat disturbance. However, temporal overlap between people and deer increased with road density. Our findings highlight the complex ecological patterns that emerge at macroecological scales. There is a need for expanded monitoring of human and wildlife use of recreation areas, particularly multi-scale and -species approaches to studying the interacting effects of recreation and land-use change on wildlife.

3.
Ecol Evol ; 12(7): e9108, 2022 Jul.
Article in English | MEDLINE | ID: mdl-35866017

ABSTRACT

Human disturbance directly affects animal populations and communities, but indirect effects of disturbance on species behaviors are less well understood. For instance, disturbance may alter predator activity and cause knock-on effects to predator-sensitive foraging in prey. Camera traps provide an emerging opportunity to investigate such disturbance-mediated impacts to animal behaviors across multiple scales. We used camera trap data to test predictions about predator-sensitive behavior in three ungulate species (caribou Rangifer tarandus; white-tailed deer, Odocoileus virginianus; moose, Alces alces) across two western boreal forest landscapes varying in disturbance. We quantified behavior as the number of camera trap photos per detection event and tested its relationship to inferred human-mediated predation risk between a landscape with greater industrial disturbance and predator activity and a "control" landscape with lower human and predator activity. We also assessed the finer-scale influence on behavior of variation in predation risk (relative to habitat variation) across camera sites within the more disturbed landscape. We predicted that animals in areas with greater predation risk (e.g., more wolf activity, less cover) would travel faster past cameras and generate fewer photos per detection event, while animals in areas with less predation risk would linger (rest, forage, investigate), generating more photos per event. Our predictions were supported at the landscape-level, as caribou and moose had more photos per event in the control landscape where disturbance-mediated predation risk was lower. At a finer-scale within the disturbed landscape, no prey species showed a significant behavioral response to wolf activity, but the number of photos per event decreased for white-tailed deer with increasing line of sight (m) along seismic lines (i.e., decreasing visual cover), consistent with a predator-sensitive response. The presence of juveniles was associated with shorter behavioral events for caribou and moose, suggesting greater predator sensitivity for females with calves. Only moose demonstrated a positive behavioral association (i.e., longer events) with vegetation productivity (16-day NDVI), suggesting that for other species bottom-up influences of forage availability were generally weaker than top-down influences from predation risk. Behavioral insights can be gleaned from camera trap surveys and provide complementary information about animal responses to predation risk, and thus about the indirect impacts of human disturbances on predator-prey interactions.

SELECTION OF CITATIONS
SEARCH DETAIL
...