Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 48
Filter
Add more filters










Publication year range
2.
Neuron ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38614102

ABSTRACT

Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and maladaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.

3.
bioRxiv ; 2024 Jan 09.
Article in English | MEDLINE | ID: mdl-38283686

ABSTRACT

Prefrontal cortical (PFC) circuits provide top-down control of threat reactivity. This includes ventromedial PFC (vmPFC) circuitry, which plays a role in suppressing fear-related behavioral states. Dynorphin (Dyn) has been implicated in mediating negative affect and mal-adaptive behaviors induced by severe threats and is expressed in limbic circuits, including the vmPFC. However, there is a critical knowledge gap in our understanding of how vmPFC Dyn-expressing neurons and Dyn transmission detect threats and regulate expression of defensive behaviors. Here, we demonstrate that Dyn cells are broadly activated by threats and release Dyn locally in the vmPFC to limit passive defensive behaviors. We further demonstrate that vmPFC Dyn-mediated signaling promotes a switch of vmPFC networks to a fear-related state. In conclusion, we reveal a previously unknown role of vmPFC Dyn neurons and Dyn neuropeptidergic transmission in suppressing defensive behaviors in response to threats via state-driven changes in vmPFC networks.

4.
ACS Nano ; 17(24): 24936-24946, 2023 Dec 26.
Article in English | MEDLINE | ID: mdl-38096422

ABSTRACT

Remote and genetically targeted neuromodulation in the deep brain is important for understanding and treatment of neurological diseases. Ultrasound-triggered mechanoluminescent technology offers a promising approach for achieving remote and genetically targeted brain modulation. However, its application has thus far been limited to shallow brain depths due to challenges related to low sonochemical reaction efficiency and restricted photon yields. Here we report a cascaded mechanoluminescent nanotransducer to achieve efficient light emission upon ultrasound stimulation. As a result, blue light was generated under ultrasound stimulation with a subsecond response latency. Leveraging the high energy transfer efficiency of focused ultrasound in brain tissue and the high sensitivity to ultrasound of these mechanoluminescent nanotransducers, we are able to show efficient photon delivery and activation of ChR2-expressing neurons in both the superficial motor cortex and deep ventral tegmental area after intracranial injection. Our liposome nanotransducers enable minimally invasive deep brain stimulation for behavioral control in animals via a flexible, mechanoluminescent sono-optogenetic system.


Subject(s)
Deep Brain Stimulation , Animals , Brain/diagnostic imaging , Brain/physiology , Neurons/physiology , Photons , Optogenetics
5.
bioRxiv ; 2023 Oct 03.
Article in English | MEDLINE | ID: mdl-37873436

ABSTRACT

Parkinson's disease (PD) targets some dopamine (DA) neurons more than others. Sex differences offer insights, with females more protected from DA neurodegeneration. The mammalian vesicular glutamate transporter VGLUT2 and Drosophila ortholog dVGLUT have been implicated as modulators of DA neuron resilience. However, the mechanisms by which VGLUT2/dVGLUT protects DA neurons remain unknown. We discovered DA neuron dVGLUT knockdown increased mitochondrial reactive oxygen species in a sexually dimorphic manner in response to depolarization or paraquat-induced stress, males being especially affected. DA neuron dVGLUT also reduced ATP biosynthetic burden during depolarization. RNA sequencing of VGLUT+ DA neurons in mice and flies identified candidate genes that we functionally screened to further dissect VGLUT-mediated DA neuron resilience across PD models. We discovered transcription factors modulating dVGLUT-dependent DA neuroprotection and identified dj-1ß as a regulator of sex-specific DA neuron dVGLUT expression. Overall, VGLUT protects DA neurons from PD-associated degeneration by maintaining mitochondrial health.

6.
Nat Neurosci ; 26(10): 1762-1774, 2023 10.
Article in English | MEDLINE | ID: mdl-37537242

ABSTRACT

Dopamine neurons are characterized by their response to unexpected rewards, but they also fire during movement and aversive stimuli. Dopamine neuron diversity has been observed based on molecular expression profiles; however, whether different functions map onto such genetic subtypes remains unclear. In this study, we established that three genetic dopamine neuron subtypes within the substantia nigra pars compacta, characterized by the expression of Slc17a6 (Vglut2), Calb1 and Anxa1, each have a unique set of responses to rewards, aversive stimuli and accelerations and decelerations, and these signaling patterns are highly correlated between somas and axons within subtypes. Remarkably, reward responses were almost entirely absent in the Anxa1+ subtype, which instead displayed acceleration-correlated signaling. Our findings establish a connection between functional and genetic dopamine neuron subtypes and demonstrate that molecular expression patterns can serve as a common framework to dissect dopaminergic functions.


Subject(s)
Dopaminergic Neurons , Substantia Nigra , Dopaminergic Neurons/physiology , Substantia Nigra/physiology , Signal Transduction , Axons
7.
bioRxiv ; 2023 Nov 21.
Article in English | MEDLINE | ID: mdl-37066408

ABSTRACT

A unique population of ventral tegmental area (VTA) neurons co-transmits glutamate and GABA as well as functionally signals rewarding and aversive outcomes. However, the circuit inputs to VTA VGluT2+VGaT+ neurons are unknown, limiting our understanding of the functional capabilities of these neurons. To identify the inputs to VTA VGluT2+VGaT+ neurons, we coupled monosynaptic rabies tracing with intersectional genetic targeting of VTA VGluT2+VGaT+ neurons in mice. We found that VTA VGluT2+VGaT+ neurons received diverse brain-wide inputs. The largest numbers of monosynaptic inputs to VTA VGluT2+VGaT+ neurons were from superior colliculus, lateral hypothalamus, midbrain reticular nucleus, and periaqueductal gray, whereas the densest inputs relative to brain region volume were from dorsal raphe nucleus, lateral habenula, and ventral tegmental area. Based on these and prior data, we hypothesized that lateral hypothalamus and superior colliculus inputs were glutamatergic neurons. Optical activation of glutamatergic lateral hypothalamus neurons robustly activated VTA VGluT2+VGaT+ neurons regardless of stimulation frequency and resulted in flee-like ambulatory behavior. In contrast, optical activation of glutamatergic superior colliculus neurons activated VTA VGluT2+VGaT+ neurons for a brief period of time at high stimulation frequency and resulted in head rotation and arrested ambulatory behavior (freezing). For both pathways, behaviors induced by stimulation were uncorrelated with VTA VGluT2+VGaT+ neuron activity. However, stimulation of glutamatergic lateral hypothalamus neurons, but not glutamatergic superior colliculus neurons, was associated with VTA VGluT2+VGaT+ footshock-induced activity. We interpret these results such that inputs to VTA VGluT2+VGaT+ neurons may integrate diverse signals related to the detection and processing of motivationally-salient outcomes. Further, VTA VGluT2+VGaT+ neurons may signal threat-related outcomes, possibly via input from lateral hypothalamus glutamate neurons, but not threat-induced behavioral kinematics.

8.
J Addict Dis ; 41(3): 225-232, 2023.
Article in English | MEDLINE | ID: mdl-35819268

ABSTRACT

The COVID-19 pandemic compelled fast adaptation of telehealth to addiction treatment services. This study aims to examine the feasibility and effectiveness of transitioning an in-person hospital addiction consult service (ACS) to telehealth. The Stanford Hospital ACS adapted to the pandemic by transforming an in-person ACS to a telehealth ACS. We compared 30-day readmission rates in patients with and without an addiction medicine consult pre-pandemic (in-person ACS) and during the pandemic (telehealth ACS). The ACS completed 370 and 473 unique patient consults in the year preceding (in-person consults) and during the pandemic (telehealth consults) respectively. Patients seen by telehealth ACS had decreased 30-day readmission rates consistent with those seen before COVID-19. A telehealth ACS is feasible and effective in the in-patient setting. Telehealth ACS holds promise to extend the reach of substance use disorder evaluation and treatment in underserved areas.


Subject(s)
COVID-19 , Telemedicine , Humans , COVID-19/epidemiology , Inpatients , Patient Readmission , Pandemics
9.
Cell ; 185(19): 3568-3587.e27, 2022 09 15.
Article in English | MEDLINE | ID: mdl-36113428

ABSTRACT

Computational analysis of cellular activity has developed largely independently of modern transcriptomic cell typology, but integrating these approaches may be essential for full insight into cellular-level mechanisms underlying brain function and dysfunction. Applying this approach to the habenula (a structure with diverse, intermingled molecular, anatomical, and computational features), we identified encoding of reward-predictive cues and reward outcomes in distinct genetically defined neural populations, including TH+ cells and Tac1+ cells. Data from genetically targeted recordings were used to train an optimized nonlinear dynamical systems model and revealed activity dynamics consistent with a line attractor. High-density, cell-type-specific electrophysiological recordings and optogenetic perturbation provided supporting evidence for this model. Reverse-engineering predicted how Tac1+ cells might integrate reward history, which was complemented by in vivo experimentation. This integrated approach describes a process by which data-driven computational models of population activity can generate and frame actionable hypotheses for cell-type-specific investigation in biological systems.


Subject(s)
Habenula , Reward , Population Dynamics
10.
Methods Mol Biol ; 2501: 289-310, 2022.
Article in English | MEDLINE | ID: mdl-35857234

ABSTRACT

There is no question that genetically encoded tools have revolutionized neuroscience. These include optically modulated tools for writing-in (optogenetics) and reading-out (calcium, voltage, and neurotransmitter indicators) neural activity as well as precision expression of these reagents using virally mediated delivery. With few exceptions, these powerful approaches are derived from naturally occurring molecules that are sourced from diverse organisms that span all kingdoms of life. Successful expression of genetic tools in standard neuroscience model organisms requires optimizing gene structure, taking into account differences in both protein translation and trafficking. Myriad approaches have resolved these two challenges, resulting in order-of-magnitude increases in functional expression. In this chapter, we focus on synthesizing prior experience in successfully enabling the transition of genes across kingdoms with a goal of facilitating the production of the next generation of molecular tools for neuroscience. We then provide a detailed protocol that allows expression and testing of novel genetically encoded tools in mammalian cell lines and primary cultured neurons.


Subject(s)
Neurosciences , Rhodopsin , Animals , Calcium/metabolism , Mammals/genetics , Neurons/metabolism , Optogenetics/methods , Rhodopsin/genetics , Rhodopsin/metabolism
11.
Cell ; 185(4): 654-671.e22, 2022 02 17.
Article in English | MEDLINE | ID: mdl-35065713

ABSTRACT

Sex hormones exert a profound influence on gendered behaviors. How individual sex hormone-responsive neuronal populations regulate diverse sex-typical behaviors is unclear. We performed orthogonal, genetically targeted sequencing of four estrogen receptor 1-expressing (Esr1+) populations and identified 1,415 genes expressed differentially between sexes or estrous states. Unique subsets of these genes were distributed across all 137 transcriptomically defined Esr1+ cell types, including estrous stage-specific ones, that comprise the four populations. We used differentially expressed genes labeling single Esr1+ cell types as entry points to functionally characterize two such cell types, BNSTprTac1/Esr1 and VMHvlCckar/Esr1. We observed that these two cell types, but not the other Esr1+ cell types in these populations, are essential for sex recognition in males and mating in females, respectively. Furthermore, VMHvlCckar/Esr1 cell type projections are distinct from those of other VMHvlEsr1 cell types. Together, projection and functional specialization of dimorphic cell types enables sex hormone-responsive populations to regulate diverse social behaviors.


Subject(s)
Estrous Cycle/genetics , Gene Expression Regulation , Sex Characteristics , Sexual Behavior, Animal/physiology , Aggression , Animals , Aromatase/metabolism , Autistic Disorder/genetics , Estrogen Receptor alpha/genetics , Estrogen Receptor alpha/metabolism , Female , Gene Expression Profiling , HEK293 Cells , Humans , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Neurons/metabolism , Social Behavior
12.
Cell Rep ; 37(6): 109975, 2021 11 09.
Article in English | MEDLINE | ID: mdl-34758317

ABSTRACT

Dopamine (DA) neurons in the ventral tier of the substantia nigra pars compacta (SNc) degenerate prominently in Parkinson's disease, while those in the dorsal tier are relatively spared. Defining the molecular, functional, and developmental characteristics of each SNc tier is crucial to understand their distinct susceptibility. We demonstrate that Sox6 expression distinguishes ventrally and dorsally biased DA neuron populations in the SNc. The Sox6+ population in the ventral SNc includes an Aldh1a1+ subset and is enriched in gene pathways that underpin vulnerability. Sox6+ neurons project to the dorsal striatum and show activity correlated with acceleration. Sox6- neurons project to the medial, ventral, and caudal striatum and respond to rewards. Moreover, we show that this adult division is encoded early in development. Overall, our work demonstrates a dual origin of the SNc that results in DA neuron cohorts with distinct molecular profiles, projections, and functions.


Subject(s)
Corpus Striatum/pathology , Dopaminergic Neurons/pathology , Gene Expression Regulation, Developmental , Parkinson Disease/pathology , SOXD Transcription Factors/metabolism , SOXD Transcription Factors/physiology , Substantia Nigra/pathology , Aged , Aged, 80 and over , Animals , Case-Control Studies , Corpus Striatum/metabolism , Dopamine/metabolism , Dopaminergic Neurons/metabolism , Female , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Middle Aged , Parkinson Disease/genetics , Parkinson Disease/metabolism , SOXD Transcription Factors/genetics , Substantia Nigra/metabolism , Ventral Tegmental Area/metabolism , Ventral Tegmental Area/pathology
13.
Neuron ; 109(23): 3823-3837.e6, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34624220

ABSTRACT

The lateral hypothalamic area (LHA) regulates feeding- and reward-related behavior, but because of its molecular and anatomical heterogeneity, the functions of defined neuronal populations are largely unclear. Glutamatergic neurons within the LHA (LHAVglut2) negatively regulate feeding and appetitive behavior. However, this population comprises transcriptionally distinct and functionally diverse neurons that project to diverse brain regions, including the lateral habenula (LHb) and ventral tegmental area (VTA). To resolve the function of distinct LHAVglut2 populations, we systematically compared projections to the LHb and VTA using viral tracing, single-cell sequencing, electrophysiology, and in vivo calcium imaging. LHAVglut2 neurons projecting to the LHb or VTA are anatomically, transcriptionally, electrophysiologically, and functionally distinct. While both populations encode appetitive and aversive stimuli, LHb projecting neurons are especially sensitive to satiety state and feeding hormones. These data illuminate the functional heterogeneity of LHAVglut2 neurons, suggesting that reward and aversion are differentially processed in divergent efferent pathways.


Subject(s)
Habenula , Hypothalamic Area, Lateral , Glutamic Acid/metabolism , Habenula/physiology , Hypothalamic Area, Lateral/physiology , Neural Pathways/physiology , Neurons/physiology , Ventral Tegmental Area/metabolism
14.
J Neurosci ; 41(22): 4840-4849, 2021 06 02.
Article in English | MEDLINE | ID: mdl-33888606

ABSTRACT

The lateral hypothalamus (LH), together with multiple neuromodulatory systems of the brain, such as the dorsal raphe nucleus (DR), is implicated in arousal, yet interactions between these systems are just beginning to be explored. Using a combination of viral tracing, circuit mapping, electrophysiological recordings from identified neurons, and combinatorial optogenetics in mice, we show that GABAergic neurons in the LH selectively inhibit GABAergic neurons in the DR, resulting in increased firing of a substantial fraction of its neurons that ultimately promotes arousal. These DRGABA neurons are wake active and project to multiple brain areas involved in the control of arousal, including the LH, where their specific activation potently influences local network activity leading to arousal from sleep. Our results show how mutual inhibitory projections between the LH and the DR promote wakefulness and suggest a complex arousal control by intimate interactions between long-range connections and local circuit dynamics.SIGNIFICANCE STATEMENT: Multiple brain systems including the lateral hypothalamus and raphe serotonergic system are involved in the regulation of the sleep/wake cycle, yet the interaction between these systems have remained elusive. Here we show that mutual disinhibition mediated by long range inhibitory projections between these brain areas can promote wakefulness. The main importance of this work relies in revealing the interaction between a brain area involved in autonomic regulation and another in controlling higher brain functions including reward, patience, mood and sensory coding.


Subject(s)
Dorsal Raphe Nucleus/physiology , GABAergic Neurons/physiology , Hypothalamic Area, Lateral/physiology , Neural Pathways/physiology , Wakefulness/physiology , Animals , Male , Mice , Sleep/physiology
15.
Cell ; 183(7): 2003-2019.e16, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33308478

ABSTRACT

The ability to record transient cellular events in the DNA or RNA of cells would enable precise, large-scale analysis, selection, and reprogramming of heterogeneous cell populations. Here, we report a molecular technology for stable genetic tagging of cells that exhibit activity-related increases in intracellular calcium concentration (FLiCRE). We used FLiCRE to transcriptionally label activated neural ensembles in the nucleus accumbens of the mouse brain during brief stimulation of aversive inputs. Using single-cell RNA sequencing, we detected FLiCRE transcripts among the endogenous transcriptome, providing simultaneous readout of both cell-type and calcium activation history. We identified a cell type in the nucleus accumbens activated downstream of long-range excitatory projections. Taking advantage of FLiCRE's modular design, we expressed an optogenetic channel selectively in this cell type and showed that direct recruitment of this otherwise genetically inaccessible population elicits behavioral aversion. The specificity and minute resolution of FLiCRE enables molecularly informed characterization, manipulation, and reprogramming of activated cellular ensembles.


Subject(s)
Behavior, Animal , Calcium/metabolism , Corpus Striatum/metabolism , Animals , Female , HEK293 Cells , Humans , Kinetics , Male , Mice, Inbred C57BL , Neurons/metabolism , Optogenetics , Rats , Single-Cell Analysis , Transcriptome/genetics
16.
Cell Rep ; 32(9): 108094, 2020 09 01.
Article in English | MEDLINE | ID: mdl-32877676

ABSTRACT

Ventral tegmental area (VTA) neurons play roles in reward and aversion. We recently discovered that the VTA has neurons that co-transmit glutamate and GABA (glutamate-GABA co-transmitting neurons), transmit glutamate without GABA (glutamate-transmitting neurons), or transmit GABA without glutamate (GABA-transmitting neurons). However, the functions of these VTA cell types in motivated behavior are unclear. To identify the functions of these VTA cell types, we combine recombinase mouse lines with INTRSECT2.0 vectors to selectively target these neurons. We find that VTA cell types have unique signaling patterns for reward, aversion, and learned cues. Whereas VTA glutamate-transmitting neurons signal cues predicting reward, VTA GABA-transmitting neurons signal cues predicting the absence of reward, and glutamate-GABA co-transmitting neurons signal rewarding and aversive outcomes without signaling learned cues related to those outcomes. Thus, we demonstrate that genetically defined subclasses of VTA glutamate and GABA neurons signal different aspects of motivated behavior.


Subject(s)
GABAergic Neurons/metabolism , Glutamic Acid/metabolism , Motivation/genetics , Ventral Tegmental Area/physiopathology , Animals , Humans , Male , Mice , Signal Transduction
17.
Neuron ; 107(5): 836-853.e11, 2020 09 09.
Article in English | MEDLINE | ID: mdl-32574559

ABSTRACT

The resolution and dimensionality with which biologists can characterize cell types have expanded dramatically in recent years, and intersectional consideration of such features (e.g., multiple gene expression and anatomical parameters) is increasingly understood to be essential. At the same time, genetically targeted technology for writing in and reading out activity patterns for cells in living organisms has enabled causal investigation in physiology and behavior; however, cell-type-specific delivery of these tools (including microbial opsins for optogenetics and genetically encoded Ca2+ indicators) has thus far fallen short of versatile targeting to cells jointly defined by many individually selected features. Here, we develop a comprehensive intersectional targeting toolbox including 39 novel vectors for joint-feature-targeted delivery of 13 molecular payloads (including opsins, indicators, and fluorophores), systematic approaches for development and optimization of new intersectional tools, hardware for in vivo monitoring of expression dynamics, and the first versatile single-virus tools (Triplesect) that enable targeting of triply defined cell types.


Subject(s)
Genetic Techniques , Neurons , Optogenetics , Animals , Dependovirus , Genetic Vectors , HEK293 Cells , Humans
18.
Science ; 367(6484): 1372-1376, 2020 03 20.
Article in English | MEDLINE | ID: mdl-32193327

ABSTRACT

The structural and functional complexity of multicellular biological systems, such as the brain, are beyond the reach of human design or assembly capabilities. Cells in living organisms may be recruited to construct synthetic materials or structures if treated as anatomically defined compartments for specific chemistry, harnessing biology for the assembly of complex functional structures. By integrating engineered-enzyme targeting and polymer chemistry, we genetically instructed specific living neurons to guide chemical synthesis of electrically functional (conductive or insulating) polymers at the plasma membrane. Electrophysiological and behavioral analyses confirmed that rationally designed, genetically targeted assembly of functional polymers not only preserved neuronal viability but also achieved remodeling of membrane properties and modulated cell type-specific behaviors in freely moving animals. This approach may enable the creation of diverse, complex, and functional structures and materials within living systems.


Subject(s)
Aniline Compounds/chemistry , Ascorbate Peroxidases/genetics , Genetic Engineering , Neurons/physiology , Nitro Compounds/chemistry , Phenylenediamines/chemistry , Polymers/chemistry , Action Potentials , Animals , Ascorbate Peroxidases/metabolism , Caenorhabditis elegans , Cell Membrane/metabolism , Cell Survival , Cells, Cultured , Electric Conductivity , HEK293 Cells , Hippocampus , Humans , Membrane Potentials , Mice , Motor Neurons/physiology , Muscle Cells/physiology , Neurons/enzymology , Patch-Clamp Techniques , Polymers/metabolism , Rats , Transduction, Genetic
19.
Proc Natl Acad Sci U S A ; 116(52): 26332-26342, 2019 Dec 26.
Article in English | MEDLINE | ID: mdl-31811026

ABSTRACT

Optogenetics, which uses visible light to control the cells genetically modified with light-gated ion channels, is a powerful tool for precise deconstruction of neural circuitry with neuron-subtype specificity. However, due to limited tissue penetration of visible light, invasive craniotomy and intracranial implantation of tethered optical fibers are usually required for in vivo optogenetic modulation. Here we report mechanoluminescent nanoparticles that can act as local light sources in the brain when triggered by brain-penetrant focused ultrasound (FUS) through intact scalp and skull. Mechanoluminescent nanoparticles can be delivered into the blood circulation via i.v. injection, recharged by 400-nm photoexcitation light in superficial blood vessels during circulation, and turned on by FUS to emit 470-nm light repetitively in the intact brain for optogenetic stimulation. Unlike the conventional "outside-in" approaches of optogenetics with fiber implantation, our method provides an "inside-out" approach to deliver nanoscopic light emitters via the intrinsic circulatory system and switch them on and off at any time and location of interest in the brain without extravasation through a minimally invasive ultrasound interface.

20.
eNeuro ; 6(6)2019.
Article in English | MEDLINE | ID: mdl-31636080

ABSTRACT

There is growing evidence that interneurons (INs) orchestrate neural activity and plasticity in corticoamygdala circuits to regulate fear behaviors. However, defining the precise role of cholecystokinin-expressing INs (CCK INs) remains elusive due to the technical challenge of parsing this population from CCK-expressing principal neurons (CCK PNs). Here, we used an intersectional genetic strategy in CCK-Cre;Dlx5/6-Flpe double-transgenic mice to study the anatomical, molecular and electrophysiological properties of CCK INs in the basal amygdala (BA) and optogenetically manipulate these cells during fear extinction. Electrophysiological recordings confirmed that this strategy targeted GABAergic cells and that a significant proportion expressed functional cannabinoid CB1 receptors; a defining characteristic of CCK-expressing basket cells. However, immunostaining showed that subsets of the genetically-targeted cells expressed either neuropeptide Y (NPY; 29%) or parvalbumin (PV; 17%), but not somatostatin (SOM) or Ca2+/calmodulin-dependent protein kinase II (CaMKII)-α. Further morphological and electrophysiological analyses showed that four IN types could be identified among the EYFP-expressing cells: CCK/cannabinoid receptor type 1 (CB1R)-expressing basket cells, neurogliaform cells, PV+ basket cells, and PV+ axo-axonic cells. At the behavioral level, in vivo optogenetic photostimulation of the targeted population during extinction acquisition led to reduced freezing on a light-free extinction retrieval test, indicating extinction memory facilitation; whereas photosilencing was without effect. Conversely, non-selective (i.e., inclusive of INs and PNs) photostimulation or photosilencing of CCK-targeted cells, using CCK-Cre single-transgenic mice, impaired extinction. These data reveal an unexpectedly high degree of phenotypic complexity in a unique population of extinction-modulating BA INs.


Subject(s)
Amygdala/physiology , Cholecystokinin/metabolism , Extinction, Psychological/physiology , Fear/physiology , Interneurons/physiology , Amygdala/metabolism , Animals , Conditioning, Classical/physiology , Interneurons/metabolism , Mice , Mice, Transgenic , Optogenetics
SELECTION OF CITATIONS
SEARCH DETAIL
...