Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 23(13)2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37448036

ABSTRACT

The adoption of the General Data Protection Regulation (GDPR) has resulted in a significant shift in how the data of European Union citizens is handled. A variety of data sharing challenges in scenarios such as smart cities have arisen, especially when attempting to semantically represent GDPR legal bases, such as consent, contracts and the data types and specific sources related to them. Most of the existing ontologies that model GDPR focus mainly on consent. In order to represent other GDPR bases, such as contracts, multiple ontologies need to be simultaneously reused and combined, which can result in inconsistent and conflicting knowledge representation. To address this challenge, we present the smashHitCore ontology. smashHitCore provides a unified and coherent model for both consent and contracts, as well as the sensor data and data processing associated with them. The ontology was developed in response to real-world sensor data sharing use cases in the insurance and smart city domains. The ontology has been successfully utilised to enable GDPR-complaint data sharing in a connected car for insurance use cases and in a city feedback system as part of a smart city use case.


Subject(s)
Computer Security , Records , Cities , European Union , Information Dissemination
2.
Sensors (Basel) ; 22(7)2022 Apr 03.
Article in English | MEDLINE | ID: mdl-35408377

ABSTRACT

The enforcement of the GDPR in May 2018 has led to a paradigm shift in data protection. Organizations face significant challenges, such as demonstrating compliance (or auditability) and automated compliance verification due to the complex and dynamic nature of consent, as well as the scale at which compliance verification must be performed. Furthermore, the GDPR's promotion of data protection by design and industrial interoperability requirements has created new technical challenges, as they require significant changes in the design and implementation of systems that handle personal data. We present a scalable data protection by design tool for automated compliance verification and auditability based on informed consent that is modeled with a knowledge graph. Automated compliance verification is made possible by implementing a regulation-to-code process that translates GDPR regulations into well-defined technical and organizational measures and, ultimately, software code. We demonstrate the effectiveness of the tool in the insurance and smart cities domains. We highlight ways in which our tool can be adapted to other domains.


Subject(s)
Computer Security , Informed Consent , Software
3.
Sensors (Basel) ; 22(3)2022 Jan 27.
Article in English | MEDLINE | ID: mdl-35161730

ABSTRACT

The hard drive is one of the important components of a computing system, and its failure can lead to both system failure and data loss. Therefore, the reliability of a hard drive is very important. Realising this importance, a number of studies have been conducted and many are still ongoing to improve hard drive failure prediction. Most of those studies rely solely on machine learning, and a few others on semantic technology. The studies based on machine learning, despite promising results, lack context-awareness such as how failures are related or what other factors, such as humidity, influence the failure of hard drives. Semantic technology, on the other hand, by means of ontologies and knowledge graphs (KGs), is able to provide the context-awareness that machine learning-based studies lack. However, the studies based on semantic technology lack the advantages of machine learning, such as the ability to learn a pattern and make predictions based on learned patterns. Therefore, in this paper, leveraging the benefits of both machine learning (ML) and semantic technology, we present our study, knowledge graph-based hard drive failure prediction. The experimental results demonstrate that our proposed method achieves higher accuracy in comparison to the current state of the art.


Subject(s)
Machine Learning , Pattern Recognition, Automated , Knowledge , Reproducibility of Results , Semantics
4.
Sensors (Basel) ; 17(9)2017 Sep 07.
Article in English | MEDLINE | ID: mdl-28880227

ABSTRACT

Considering that the largest part of end-use energy consumption worldwide is associated with the buildings sector, there is an inherent need for the conceptualization, specification, implementation, and instantiation of novel solutions in smart buildings, able to achieve significant reductions in energy consumption through the adoption of energy efficient techniques and the active engagement of the occupants. Towards the design of such solutions, the identification of the main energy consuming factors, trends, and patterns, along with the appropriate modeling and understanding of the occupants' behavior and the potential for the adoption of environmentally-friendly lifestyle changes have to be realized. In the current article, an innovative energy-aware information technology (IT) ecosystem is presented, aiming to support the design and development of novel personalized energy management and awareness services that can lead to occupants' behavioral change towards actions that can have a positive impact on energy efficiency. Novel information and communication technologies (ICT) are exploited towards this direction, related mainly to the evolution of the Internet of Things (IoT), data modeling, management and fusion, big data analytics, and personalized recommendation mechanisms. The combination of such technologies has resulted in an open and extensible architectural approach able to exploit in a homogeneous, efficient and scalable way the vast amount of energy, environmental, and behavioral data collected in energy efficiency campaigns and lead to the design of energy management and awareness services targeted to the occupants' lifestyles. The overall layered architectural approach is detailed, including design and instantiation aspects based on the selection of set of available technologies and tools. Initial results from the usage of the proposed energy aware IT ecosystem in a pilot site at the University of Murcia are presented along with a set of identified open issues for future research.

SELECTION OF CITATIONS
SEARCH DETAIL
...