Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 4: 5461, 2014 Jun 26.
Article in English | MEDLINE | ID: mdl-24964801

ABSTRACT

Grain boundaries (GBs) are often the preferred sites for void nucleation in ductile metals. However, it has been observed that all boundaries do not contribute equally to this process. We present a mechanistic rationale for the role of GBs in damage nucleation in copper, along with a quantitative map for predicting preferred void nucleation at GBs based on molecular dynamics simulations in copper. Simulations show a direct correlation between the void nucleation stress and the ability of a grain boundary to plastically deform by emitting dislocations, during shock compression. Plastic response of a GB, affects the development of stress concentrations believed to be responsible for void nucleation by acting as a dissipation mechanism for the applied stress.

2.
J Chem Phys ; 132(21): 214709, 2010 Jun 07.
Article in English | MEDLINE | ID: mdl-20528043

ABSTRACT

When BaZrO(3) is doped with Y in 12.5% of Zr sites, density functional theory with the PBE functional predicts octahedral distortions within a cubic phase yielding a greater variety of proton binding sites than undoped BaZrO(3). Proton binding sites, transition states, and normal modes are found and used to calculate transition state theory rate constants. The binding sites are used to represent vertices in a graph. The rate constants connecting binding sites are used to provide weights for graph edges. Vertex and color coding are used to find proton conduction pathways in BaZr(0.875)Y(0.125)O(3). Many similarly probable proton conduction pathways which can be periodically replicated to yield long range proton conduction are found. The average limiting barriers at 600 K for seven step and eight step periodic pathways are 0.29 and 0.30 eV, respectively. Inclusion of a lattice reorganization barrier raises these to 0.42 and 0.33 eV, respectively. The majority of the seven step pathways have an interoctahedral rate limiting step while the majority of the eight step pathways have an intraoctahedral rate limiting step. While the average limiting barrier of the seven step periodic pathway including a lattice reorganization barrier is closer to experiment, how to appropriately weight different length periodic pathways is not clear. Likely, conduction is influenced by combinations of different length pathways. Vertex and color coding provide useful ways of finding the wide variety of long range proton conduction pathways that contribute to long range proton conduction. They complement more traditional serial methods such as molecular dynamics and kinetic Monte Carlo.

SELECTION OF CITATIONS
SEARCH DETAIL
...