Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
bioRxiv ; 2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38352542

ABSTRACT

Background: Evidence for sex differences in cognition in childhood is established, but less is known about the underlying neural mechanisms for these differences. Recent findings suggest the existence of brain-behavior relationship heterogeneities during infancy; however, it remains unclear whether sex underlies these heterogeneities during this critical period when sex-related behavioral differences arise. Methods: A sample of 316 infants was included with resting-state functional magnetic resonance imaging scans at neonate (3 weeks), 1, and 2 years of age. We used multiple linear regression to test interactions between sex and resting-state functional connectivity on behavioral scores of working memory, inhibitory self-control, intelligence, and anxiety collected at 4 years of age. Results: We found six age-specific, intra-hemispheric connections showing significant and robust sex differences in functional connectivity-behavior relationships. All connections are either with the prefrontal cortex or the temporal pole, which has direct anatomical pathways to the prefrontal cortex. Sex differences in functional connectivity only emerge when associated with behavior, and not in functional connectivity alone. Furthermore, at neonate and 2 years of age, these age-specific connections displayed greater connectivity in males and lower connectivity in females in association with better behavioral scores. Conclusions: Taken together, we critically capture robust and conserved brain mechanisms that are distinct to sex and are defined by their relationship to behavioral outcomes. Our results establish brain-behavior mechanisms as an important feature in the search for sex differences during development.

2.
Dev Cogn Neurosci ; 60: 101235, 2023 04.
Article in English | MEDLINE | ID: mdl-36966646

ABSTRACT

Sex differences in behavior have been reported from infancy through adulthood, but little is known about sex effects on functional circuitry in early infancy. Moreover, the relationship between early sex effects on the functional architecture of the brain and later behavioral performance remains to be elucidated. In this study, we used resting-state fMRI and a novel heatmap analysis to examine sex differences in functional connectivity with cross-sectional and longitudinal mixed models in a large cohort of infants (n = 319 neonates, 1-, and 2-year-olds). An adult dataset (n = 92) was also included for comparison. We investigated the relationship between sex differences in functional circuitry and later measures of language (collected in 1- and 2-year-olds) as well as indices of anxiety, executive function, and intelligence (collected in 4-year-olds). Brain areas showing the most significant sex differences were age-specific across infancy, with two temporal regions demonstrating consistent differences. Measures of functional connectivity showing sex differences in infancy were significantly associated with subsequent behavioral scores of language, executive function, and intelligence. Our findings provide insights into the effects of sex on dynamic neurodevelopmental trajectories during infancy and lay an important foundation for understanding the mechanisms underlying sex differences in health and disease.


Subject(s)
Brain , Sex Characteristics , Infant , Infant, Newborn , Adult , Humans , Male , Female , Child, Preschool , Cross-Sectional Studies , Temporal Lobe , Brain Mapping , Magnetic Resonance Imaging , Neural Pathways
3.
Neuroimage Clin ; 28: 102443, 2020.
Article in English | MEDLINE | ID: mdl-33027702

ABSTRACT

Previous studies examining the resting-state functional connectivity of the periaqueductal gray (PAG) in chronic visceral pain have localized PAG coordinates derived from BOLD responses to provoked acute pain. These coordinates appear to be several millimeters anterior of the anatomical location of the PAG. Therefore, we aimed to determine whether measures of PAG functional connectivity are sensitive to the localization technique, and if the localization approach has an impact on detecting disease-related differences in chronic visceral pain patients. We examined structural and resting-state functional MRI (rs-fMRI) images from 209 participants in the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We applied three different localization techniques to define a region-of-interest (ROI) for the PAG: 1) a ROI previously-published as a Montreal Neurological Institute (MNI) coordinate surrounded by a 3 mm radius sphere (MNI-sphere), 2) a ROI that was hand-traced over the PAG in a MNI template brain (MNI-trace), and 3) a ROI that was hand-drawn over the PAG in structural images from 30 individual participants (participant-trace). We compared the correlation among the rs-fMRI signals from these PAG ROIs, as well as the functional connectivity of these ROIs with the whole brain. First, we found important non-uniformities in brainstem rs-fMRI signals, as rs-fMRI signals from the MNI-trace ROI were significantly more similar to the participant-trace ROI than to the MNI-sphere ROI. We then found that choice of ROI also impacts whole-brain functional connectivity, as measures of PAG functional connectivity throughout the brain were more similar between MNI-trace and participant-trace compared to MNI-sphere and participant-trace. Finally, we found that ROI choice impacts detection of disease-related differences, as functional connectivity differences between pelvic pain patients and healthy controls were much more apparent using the MNI-trace ROI compared to the MNI-sphere ROI. These results indicate that the ROI used to localize the PAG is critical, especially when examining brain functional connectivity changes in chronic visceral pain patients.


Subject(s)
Periaqueductal Gray , Visceral Pain , Brain Mapping , Humans , Magnetic Resonance Imaging , Neural Pathways/diagnostic imaging , Neuroimaging , Periaqueductal Gray/diagnostic imaging
4.
Neurourol Urodyn ; 38(6): 1517-1523, 2019 08.
Article in English | MEDLINE | ID: mdl-31044482

ABSTRACT

AIMS: In the human brain, supplementary motor area (SMA) is involved in the control of pelvic floor muscles (PFMs). SMA dysfunction has been implicated in several disorders involving PFMs, including urinary incontinence and urologic pain. Here, we aimed to provide a proof-of-concept study to demonstrate the feasibility of modulating resting PFM activity (tone) as well as SMA activity with noninvasive stimulation of SMA. METHODS: We studied six patients (3 women + 3 men) with Urologic Chronic Pelvic Pain Syndrome. Repetitive transcranial magnetic stimulation (rTMS) was applied to SMA immediately after voiding. We tested two rTMS protocols: high-frequency (HF-rTMS) which is generally excitatory, and low-frequency (LF-rTMS) which is generally inhibitory. PFM activity was measured during rTMS using electromyography. Brain activity was measured immediately before and after rTMS using functional magnetic resonance imaging. RESULTS: The rTMS protocols had significantly different effects on resting activity in PFMs (P = 0.03): HF-rTMS decreased and LF-rTMS increased pelvic floor tone. SMA activity showed a clear trend ( P = 0.06) toward the expected differential changes: HF-rTMS increased and LF-rTMS decreased SMA activity. CONCLUSIONS: We interpret the differential effects of rTMS at the brain and muscle level as novel support for an important inhibitory influence of SMA activity on pelvic floor tone after voiding. This preliminary study provides a framework for designing future studies to determine if neuromodulation of SMA could augment therapy for chronic urologic conditions.


Subject(s)
Motor Cortex/physiopathology , Pelvic Floor Disorders/physiopathology , Pelvic Floor/physiopathology , Pelvic Pain/physiopathology , Pelvic Pain/therapy , Urologic Diseases/physiopathology , Urologic Diseases/therapy , Adult , Aged , Electromyography , Female , Humans , Magnetic Resonance Imaging , Male , Middle Aged , Muscle Tonus , Pain Management/methods , Transcranial Magnetic Stimulation , Treatment Outcome , Urinary Incontinence/physiopathology , Urinary Incontinence/therapy
5.
Pain ; 158(6): 1069-1082, 2017 06.
Article in English | MEDLINE | ID: mdl-28328579

ABSTRACT

Chronic pain symptoms often change over time, even in individuals who have had symptoms for years. Studying biological factors that predict trends in symptom change in chronic pain may uncover novel pathophysiological mechanisms and potential therapeutic targets. In this study, we investigated whether brain functional connectivity measures obtained from resting-state functional magnetic resonance imaging at baseline can predict longitudinal symptom change (3, 6, and 12 months after scan) in urologic chronic pelvic pain syndrome. We studied 52 individuals with urologic chronic pelvic pain syndrome (34 women, 18 men) who had baseline neuroimaging followed by symptom tracking every 2 weeks for 1 year as part of the Multidisciplinary Approach to the Study of Chronic Pelvic Pain (MAPP) Research Network study. We found that brain functional connectivity can make a significant prediction of short-term (3 month) pain reduction with 73.1% accuracy (69.2% sensitivity and 75.0% precision). In addition, we found that the brain regions with greatest contribution to the classification were preferentially aligned with the left frontoparietal network. Resting-state functional magnetic resonance imaging measures seemed to be less informative about 6- or 12-month symptom change. Our study provides the first evidence that future trends in symptom change in patients in a state of chronic pain may be linked to functional connectivity within specific brain networks.


Subject(s)
Brain/physiopathology , Chronic Pain/physiopathology , Connectome , Disease Progression , Nerve Net/physiopathology , Pelvic Pain/prevention & control , Urologic Diseases/physiopathology , Adult , Chronic Pain/diagnosis , Female , Humans , Longitudinal Studies , Magnetic Resonance Imaging , Male , Pelvic Pain/diagnosis , Postal Service , Reproducibility of Results , Rest , Sensitivity and Specificity , Syndrome , Urologic Diseases/diagnosis
SELECTION OF CITATIONS
SEARCH DETAIL
...