Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Protein Sci ; 33(7): e5075, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38895978

ABSTRACT

Rheostat positions, which can be substituted with various amino acids to tune protein function across a range of outcomes, are a developing area for advancing personalized medicine and bioengineering. Current methods cannot accurately predict which proteins contain rheostat positions or their substitution outcomes. To compare the prevalence of rheostat positions in homologs, we previously investigated their occurrence in two pyruvate kinase (PYK) isozymes. Human liver PYK contained numerous rheostat positions that tuned the apparent affinity for the substrate phosphoenolpyruvate (Kapp-PEP) across a wide range. In contrast, no functional rheostat positions were identified in Zymomonas mobilis PYK (ZmPYK). Further, the set of ZmPYK substitutions included an unusually large number that lacked measurable activity. We hypothesized that the inactive substitution variants had reduced protein stability, precluding detection of Kapp-PEP tuning. Using modified buffers, robust enzymatic activity was obtained for 19 previously-inactive ZmPYK substitution variants at three positions. Surprisingly, both previously-inactive and previously-active substitution variants all had Kapp-PEP values close to wild-type. Thus, none of the three positions were functional rheostat positions, and, unlike human liver PYK, ZmPYK's Kapp-PEP remained poorly tunable by single substitutions. To directly assess effects on stability, we performed thermal denaturation experiments for all ZmPYK substitution variants. Many diminished stability, two enhanced stability, and the three positions showed different thermal sensitivity to substitution, with one position acting as a "stability rheostat." The differences between the two PYK homologs raises interesting questions about the underlying mechanism(s) that permit functional tuning by single substitutions in some proteins but not in others.


Subject(s)
Pyruvate Kinase , Zymomonas , Humans , Zymomonas/enzymology , Zymomonas/genetics , Zymomonas/chemistry , Zymomonas/metabolism , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Pyruvate Kinase/genetics , Amino Acid Substitution , Protein Stability , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Enzyme Stability , Liver/enzymology , Liver/metabolism , Liver/chemistry , Phosphoenolpyruvate/metabolism , Phosphoenolpyruvate/chemistry
2.
J Biol Chem ; 300(6): 107352, 2024 May 08.
Article in English | MEDLINE | ID: mdl-38723750

ABSTRACT

In Escherichia coli, the master transcription regulator catabolite repressor activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli's central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.

3.
J Biol Chem ; 300(3): 105736, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38336297

ABSTRACT

Advances in personalized medicine and protein engineering require accurately predicting outcomes of amino acid substitutions. Many algorithms correctly predict that evolutionarily-conserved positions show "toggle" substitution phenotypes, which is defined when a few substitutions at that position retain function. In contrast, predictions often fail for substitutions at the less-studied "rheostat" positions, which are defined when different amino acid substitutions at a position sample at least half of the possible functional range. This review describes efforts to understand the impact and significance of rheostat positions: (1) They have been observed in globular soluble, integral membrane, and intrinsically disordered proteins; within single proteins, their prevalence can be up to 40%. (2) Substitutions at rheostat positions can have biological consequences and ∼10% of substitutions gain function. (3) Although both rheostat and "neutral" (defined when all substitutions exhibit wild-type function) positions are nonconserved, the two classes have different evolutionary signatures. (4) Some rheostat positions have pleiotropic effects on function, simultaneously modulating multiple parameters (e.g., altering both affinity and allosteric coupling). (5) In structural studies, substitutions at rheostat positions appear to cause only local perturbations; the overall conformations appear unchanged. (6) Measured functional changes show promising correlations with predicted changes in protein dynamics; the emergent properties of predicted, dynamically coupled amino acid networks might explain some of the complex functional outcomes observed when substituting rheostat positions. Overall, rheostat positions provide unique opportunities for using single substitutions to tune protein function. Future studies of these positions will yield important insights into the protein sequence/function relationship.


Subject(s)
Amino Acid Substitution , Amino Acids , Proteins , Amino Acid Sequence , Amino Acids/genetics , Amino Acids/metabolism , Conserved Sequence , Evolution, Molecular , Intrinsically Disordered Proteins/chemistry , Intrinsically Disordered Proteins/genetics , Intrinsically Disordered Proteins/metabolism , Membrane Proteins/chemistry , Membrane Proteins/genetics , Membrane Proteins/metabolism , Protein Engineering , Proteins/chemistry , Proteins/genetics , Proteins/metabolism , Structure-Activity Relationship , Humans
4.
J Biol Chem ; 300(3): 105672, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38272229

ABSTRACT

"Allosteric" was first introduced to mean the other site (i.e., a site distinct from the active or orthosteric site), an adjective for "regulation" to imply a regulatory outcome resulting from ligand binding at another site. That original idea outlines a system with two ligand-binding events at two distinct locations on a macromolecule (originally a protein system), which defines a four-state energy cycle. An allosteric energy cycle provides a quantifiable allosteric coupling constant and focuses our attention on the unique properties of the four equilibrated protein complexes that constitute the energy cycle. Because many observed phenomena have been referenced as "allosteric regulation" in the literature, the goal of this work is to use literature examples to explore which systems are and are not consistent with the two-ligand thermodynamic energy cycle-based definition of allosteric regulation. We emphasize the need for consistent language so comparisons can be made among the ever-increasing number of allosteric systems. Building on the mutually exclusive natures of an energy cycle definition of allosteric regulation versus classic two-state models, we conclude our discussion by outlining how the often-proposed Rube-Goldberg-like mechanisms are likely inconsistent with an energy cycle definition of allosteric regulation.


Subject(s)
Allosteric Regulation , Allosteric Site , Ligands , Thermodynamics , Humans , Animals , Biocatalysis , Protein Folding , Proteins/metabolism
5.
Protein Sci ; 33(2): e4863, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38073129

ABSTRACT

During protein evolution, some amino acid substitutions modulate protein function ("tuneability"). In most proteins, the tuneable range is wide and can be sampled by a set of protein variants that each contains multiple amino acid substitutions. In other proteins, the full tuneable range can be accessed by a set of variants that each contains a single substitution. Indeed, in some globular proteins, the full tuneable range can be accessed by the set of site-saturating substitutions at an individual "rheostat" position. However, in proteins with intrinsically disordered regions (IDRs), most functional studies-which would also detect tuneability-used multiple substitutions or small deletions. In disordered transcriptional activation domains (ADs), studies with multiple substitutions led to the "acidic exposure" model, which does not anticipate the existence of rheostat positions. In the few studies that did assess effects of single substitutions on AD function, results were mixed: the ADs of two full-length transcription factors did not show tuneability, whereas a fragment of a third AD was tuneable by single substitutions. In this study, we tested tuneability in the AD of full-length human class II transactivator (CIITA). Sequence analyses and experiments showed that CIITA's AD is an IDR. Functional assays of singly-substituted AD variants showed that CIITA's function was highly tuneable, with outcomes not predicted by the acidic exposure model. Four tested positions showed rheostat behavior for transcriptional activation. Thus, tuneability of different IDRs can vary widely. Future studies are needed to illuminate the biophysical features that govern whether an IDR is tuneable by single substitutions.


Subject(s)
Nuclear Proteins , Transcriptional Activation , Humans , Amino Acid Substitution , Intrinsically Disordered Proteins/chemistry , Nuclear Proteins/metabolism , Trans-Activators/chemistry
6.
Proteins ; 92(4): 554-566, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041394

ABSTRACT

NADH cytochrome b5 oxidoreductase (Ncb5or) is a cytosolic ferric reductase implicated in diabetes and neurological conditions. Ncb5or comprises cytochrome b5 (b5 ) and cytochrome b5 reductase (b5 R) domains separated by a CHORD-Sgt1 (CS) linker domain. Ncb5or redox activity depends on proper inter-domain interactions to mediate electron transfer from NADH or NADPH via FAD to heme. While full-length human Ncb5or has proven resistant to crystallization, we have succeeded in obtaining high-resolution atomic structures of the b5 domain and a construct containing the CS and b5 R domains (CS/b5 R). Ncb5or also contains an N-terminal intrinsically disordered region of 50 residues that has no homologs in other protein families in animals but features a distinctive, conserved L34 MDWIRL40 motif also present in reduced lateral root formation (RLF) protein in rice and increased recombination center 21 in baker's yeast, all attaching to a b5 domain. After unsuccessful attempts at crystallizing a human Ncb5or construct comprising the N-terminal region naturally fused to the b5 domain, we were able to obtain a high-resolution atomic structure of a recombinant rice RLF construct corresponding to residues 25-129 of human Ncb5or (52% sequence identity; 74% similarity). The structure reveals Trp120 (corresponding to invariant Trp37 in Ncb5or) to be part of an 11-residue α-helix (S116 QMDWLKLTRT126 ) packing against two of the four helices in the b5 domain that surround heme (α2 and α5). The Trp120 side chain forms a network of interactions with the side chains of four highly conserved residues corresponding to Tyr85 and Tyr88 (α2), Cys124 (α5), and Leu47 in Ncb5or. Circular dichroism measurements of human Ncb5or fragments further support a key role of Trp37 in nucleating the formation of the N-terminal helix, whose location in the N/b5 module suggests a role in regulating the function of this multi-domain redox enzyme. This study revealed for the first time an ancient origin of a helical motif in the N/b5 module as reflected by its existence in a class of cytochrome b5 proteins from three kingdoms among eukaryotes.


Subject(s)
Cytochromes b , NAD , Animals , Humans , Cytochrome-B(5) Reductase/chemistry , Oxidoreductases , Heme/chemistry
7.
Arch Biochem Biophys ; 744: 109679, 2023 08.
Article in English | MEDLINE | ID: mdl-37393983

ABSTRACT

Human liver pyruvate kinase (hlPYK) catalyzes the final step in glycolysis, the formation of pyruvate (PYR) and ATP from phosphoenolpyruvate (PEP) and ADP. Fructose 1,6-bisphosphate (FBP), a pathway intermediate of glycolysis, serves as an allosteric activator of hlPYK. Zymomonas mobilis pyruvate kinase (ZmPYK) performs the final step of the Entner-Doudoroff pathway, which is similar to glycolysis in that energy is harvested from glucose and pyruvate is generated. The Entner-Doudoroff pathway does not have FBP as a pathway intermediate, and ZmPYK is not allosterically activated. In this work, we solved the 2.4 Å X-ray crystallographic structure of ZmPYK. The protein is dimeric in solution as determined by gel filtration chromatography, but crystallizes as a tetramer. The buried surface area of the ZmPYK tetramerization interface is significantly smaller than that of hlPYK, and yet tetramerization using the standard interfaces from higher organisms provides an accessible low energy crystallization pathway. Interestingly, the ZmPYK structure showed a phosphate ion in the analogous location to the 6-phosphate binding site of FBP in hlPYK. Circular Dichroism (CD) was used to measure melting temperatures of hlPYK and ZmPYK in the absence and presence of substrates and effectors. The only significant difference was an additional phase of small amplitude for the ZmPYK melting curves. We conclude that the phosphate ion plays neither a structural or allosteric role in ZmPYK under the conditions tested. We hypothesize that ZmPYK does not have sufficient protein stability for activity to be tuned by allosteric effectors as described for rheostat positions in the allosteric homologues.


Subject(s)
Pyruvate Kinase , Zymomonas , Humans , Pyruvate Kinase/metabolism , Zymomonas/metabolism , Binding Sites , Carbohydrate Metabolism , Pyruvates , Allosteric Regulation
8.
Sci Rep ; 13(1): 10557, 2023 06 29.
Article in English | MEDLINE | ID: mdl-37386072

ABSTRACT

There is growing recognition that the functional outcome of binding of an allosteric regulator to a protein/enzyme is influenced by the presence of other ligands. Here, this complexity is exemplified in the allosteric regulation of human liver pyruvate kinase (hLPYK) that is influenced by the presence of a range of divalent cation types and concentrations. For this system, fructose-1,6-bisphosphate (activator) and alanine (inhibitor) both influence the protein's affinity for the substrate, phosphoenolpyruvate (PEP). Mg2+, Mn2+, Ni2+, and Co2+ were the primary divalent cations evaluated, although Zn2+, Cd2+, V2+, Pb2+, Fe2+, and Cu2+also supported activity. Allosteric coupling between Fru-1,6-BP and PEP and between Ala and PEP varied depending on divalent cation type and concentration. Due to complicating interactions among small molecules, we did not attempt the fitting of response trends and instead we discuss a range of potential mechanisms that may explain those observed trends. Specifically, observed "substrate inhibition" may result from substrate A in one active site acting as an allosteric regulator for the affinity for substrate B in a second active site of a multimer. We also discuss apparent changes in allosteric coupling that can result from a sub-saturating concentration of a third allosteric ligand.


Subject(s)
Acceptance and Commitment Therapy , Pyruvate Kinase , Humans , Allosteric Regulation , Cations, Divalent , Liver
9.
Database (Oxford) ; 20232023 05 03.
Article in English | MEDLINE | ID: mdl-37171062

ABSTRACT

Interpreting changes in patient genomes, understanding how viruses evolve and engineering novel protein function all depend on accurately predicting the functional outcomes that arise from amino acid substitutions. To that end, the development of first-generation prediction algorithms was guided by historic experimental datasets. However, these datasets were heavily biased toward substitutions at positions that have not changed much throughout evolution (i.e. conserved). Although newer datasets include substitutions at positions that span a range of evolutionary conservation scores, these data are largely derived from assays that agglomerate multiple aspects of function. To facilitate predictions from the foundational chemical properties of proteins, large substitution databases with biochemical characterizations of function are needed. We report here a database derived from mutational, biochemical, bioinformatic, structural, pathological and computational studies of a highly studied protein family-pyruvate kinase (PYK). A centerpiece of this database is the biochemical characterization-including quantitative evaluation of allosteric regulation-of the changes that accompany substitutions at positions that sample the full conservation range observed in the PYK family. We have used these data to facilitate critical advances in the foundational studies of allosteric regulation and protein evolution and as rigorous benchmarks for testing protein predictions. We trust that the collected dataset will be useful for the broader scientific community in the further development of prediction algorithms. Database URL https://github.com/djparente/PYK-DB.


Subject(s)
Isoenzymes , Pyruvate Kinase , Humans , Pyruvate Kinase/genetics , Pyruvate Kinase/chemistry , Pyruvate Kinase/metabolism , Isoenzymes/metabolism , Ligands , Proteins/chemistry , Allosteric Regulation , Computational Biology
10.
J Biol Chem ; 299(1): 102762, 2023 01.
Article in English | MEDLINE | ID: mdl-36463962

ABSTRACT

Chlamydia trachomatis (ct) is the most reported bacterial sexually transmitted infection worldwide and the leading cause of preventable blindness. Caseinolytic proteases (ClpP) from pathogenic bacteria are attractive antibiotic targets, particularly for bacterial species that form persister colonies with phenotypic resistance against common antibiotics. ClpP functions as a multisubunit proteolytic complex, and bacteria are eradicated when ClpP is disrupted. Although crucial for chlamydial development and the design of agents to treat chlamydia, the structures of ctClpP1 and ctClpP2 have yet to be solved. Here, we report the first crystal structure of full-length ClpP2 as an inactive homotetradecamer in a complex with a candidate antibiotic at 2.66 Å resolution. The structure details the functional domains of the ClpP2 protein subunit and includes the handle domain, which is integral to proteolytic activation. In addition, hydrogen-deuterium exchange mass spectroscopy probed the dynamics of ClpP2, and molecular modeling of ClpP1 predicted an assembly with ClpP2. By leveraging previous enzymatic experiments, we constructed a model of ClpP2 activation and its interaction with the protease subunits ClpP1 and ClpX. The structural information presented will be relevant for future rational drug design against these targets and will lead to a better understanding of ClpP complex formation and activation within this important human pathogen.


Subject(s)
Chlamydia trachomatis , Endopeptidase Clp , Models, Molecular , Humans , Anti-Bacterial Agents , Bacterial Proteins/chemistry , Bacterial Proteins/metabolism , Chlamydia trachomatis/enzymology , Endopeptidase Clp/chemistry , Endopeptidase Clp/metabolism , Crystallization , Protein Domains
11.
bioRxiv ; 2023 Dec 14.
Article in English | MEDLINE | ID: mdl-38168282

ABSTRACT

In Escherichia coli, the master transcription regulator Catabolite Repressor Activator (Cra) regulates >100 genes in central metabolism. Cra binding to DNA is allosterically regulated by binding to fructose-1-phosphate (F-1-P), but the only documented source of F-1-P is from the concurrent import and phosphorylation of exogenous fructose. Thus, many have proposed that fructose-1,6-bisphosphate (F-1,6-BP) is also a physiological regulatory ligand. However, the role of F-1,6-BP has been widely debated. Here, we report that the E. coli enzyme fructose-1-kinase (FruK) can carry out its "reverse" reaction under physiological substrate concentrations to generate F-1-P from F-1,6-BP. We further show that FruK directly binds Cra with nanomolar affinity and forms higher order, heterocomplexes. Growth assays with a ΔfruK strain and fruK complementation show that FruK has a broader role in metabolism than fructose catabolism. The ΔfruK strain also alters biofilm formation. Since fruK itself is repressed by Cra, these newly-reported events add layers to the dynamic regulation of E. coli central metabolism that occur in response to changing nutrients. These findings might have wide-spread relevance to other γ-proteobacteria, which conserve both Cra and FruK.

12.
Protein Sci ; 31(7): e4336, 2022 07.
Article in English | MEDLINE | ID: mdl-35762709

ABSTRACT

Various protein properties are often illuminated using sequence comparisons of protein homologs. For example, in analyses of the pyruvate kinase multiple sequence alignment, the set of positions that changed during speciation ("phylogenetic" positions) were enriched for "rheostat" positions in human liver pyruvate kinase (hLPYK). (Rheostat positions are those which, when substituted with various amino acids, yield a range of functional outcomes). However, the correlation was moderate, which could result from multiple biophysical constraints acting on the same position during evolution and/or various sources of noise. To further examine this correlation, we here tested Zymomonas mobilis PYK (ZmPYK), which has <65% sequence identity to any other PYK sequence. Twenty-six ZmPYK positions were selected based on their phylogenetic scores, substituted with multiple amino acids, and assessed for changes in Kapp-PEP . Although we expected to identify multiple, strong rheostat positions, only one moderate rheostat position was detected. Instead, nearly half of the 271 ZmPYK variants were inactive and most others showed near wild-type function. Indeed, for the active ZmPYK variants, the total range of Kapp,PEP values ("tunability") was 40-fold less than that observed for hLPYK variants. The combined functional studies and sequence comparisons suggest that ZmPYK has evolved functional and/or structural attributes that differ from the rest of the family. We hypothesize that including such "orphan" sequences in MSA analyses obscures the correlations used to predict rheostat positions. Finally, results raise the intriguing biophysical question as to how the same protein fold can support rheostat positions in one homolog but not another.


Subject(s)
Pyruvate Kinase , Zymomonas , Amino Acids , Humans , Proteins/chemistry , Pyruvate Kinase/chemistry , Zymomonas/genetics , Zymomonas/metabolism
13.
Int J Mol Sci ; 23(6)2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35328632

ABSTRACT

In the Na+/taurocholate cotransporting polypeptide (NTCP), the clinically relevant S267F polymorphism occurs at a "rheostat position". That is, amino acid substitutions at this position ("S267X") lead to a wide range of functional outcomes. This result was particularly striking because molecular models predicted the S267X side chains are buried, and thus, usually expected to be less tolerant of substitutions. To assess whether structural tolerance to buried substitutions is widespread in NTCP, here we used Rosetta to model all 19 potential substitutions at another 13 buried positions. Again, only subtle changes in the calculated stabilities and structures were predicted. Calculations were experimentally validated for 19 variants at codon 271 ("N271X"). Results showed near wildtype expression and rheostatic modulation of substrate transport, implicating N271 as a rheostat position. Notably, each N271X substitution showed a similar effect on the transport of three different substrates and thus did not alter substrate specificity. This differs from S267X, which altered both transport kinetics and specificity. As both transport and specificity may change during protein evolution, the recognition of such rheostat positions may be important for evolutionary studies. We further propose that the presence of rheostat positions is facilitated by local plasticity within the protein structure. Finally, we note that identifying rheostat positions may advance efforts to predict new biomedically relevant missense variants in NTCP and other membrane transport proteins.


Subject(s)
Organic Anion Transporters, Sodium-Dependent , Symporters , Amino Acid Substitution , Humans , Membrane Transport Proteins , Organic Anion Transporters, Sodium-Dependent/genetics , Organic Anion Transporters, Sodium-Dependent/metabolism , Peptides/metabolism , Polymorphism, Genetic , Symporters/metabolism , Taurocholic Acid
14.
Protein Sci ; 31(2): 357-370, 2022 02.
Article in English | MEDLINE | ID: mdl-34734672

ABSTRACT

Some protein positions play special roles in determining the magnitude of protein function: at such "rheostat" positions, varied amino acid substitutions give rise to a continuum of functional outcomes, from wild type (or enhanced), to intermediate, to loss of function. This observed range raises interesting questions about the biophysical bases by which changes at single positions have such varied outcomes. Here, we assessed variants at position 98 in human aldolase A ("I98X"). Despite being ~17 Å from the active site and far from subunit interfaces, substitutions at position 98 have rheostatic contributions to the apparent cooperativity (nH ) associated with fructose-1,6-bisphosphate substrate binding and moderately affected binding affinity. Next, we crystallized representative I98X variants to assess structural consequences. Residues smaller than the native isoleucine (cysteine and serine) were readily accommodated, and the larger phenylalanine caused only a slight separation of the two parallel helixes. However, the diffraction quality was reduced for I98F, and further reduced for I98Y. Intriguingly, the resolutions of the I98X structures correlated with their nH values. We propose that substitution effects on both nH and crystal lattice disruption arise from changes in the population of aldolase A conformations in solution. In combination with results computed for rheostat positions in other proteins, the results from this study suggest that rheostat positions accommodate a wide range of side chains and that structural consequences manifest as shifted ensemble populations and/or dynamics changes.


Subject(s)
Fructose-Bisphosphate Aldolase , Amino Acid Substitution , Binding Sites , Catalytic Domain , Fructose-Bisphosphate Aldolase/chemistry , Fructose-Bisphosphate Aldolase/genetics , Humans , Mutation, Missense , Protein Conformation
15.
Protein Sci ; 30(9): 1833-1853, 2021 09.
Article in English | MEDLINE | ID: mdl-34076313

ABSTRACT

When amino acids vary during evolution, the outcome can be functionally neutral or biologically-important. We previously found that substituting a subset of nonconserved positions, "rheostat" positions, can have surprising effects on protein function. Since changes at rheostat positions can facilitate functional evolution or cause disease, more examples are needed to understand their unique biophysical characteristics. Here, we explored whether "phylogenetic" patterns of change in multiple sequence alignments (such as positions with subfamily specific conservation) predict the locations of functional rheostat positions. To that end, we experimentally tested eight phylogenetic positions in human liver pyruvate kinase (hLPYK), using 10-15 substitutions per position and biochemical assays that yielded five functional parameters. Five positions were strongly rheostatic and three were non-neutral. To test the corollary that positions with low phylogenetic scores were not rheostat positions, we combined these phylogenetic positions with previously-identified hLPYK rheostat, "toggle" (most substitution abolished function), and "neutral" (all substitutions were like wild-type) positions. Despite representing 428 variants, this set of 33 positions was poorly statistically powered. Thus, we turned to the in vivo phenotypic dataset for E. coli lactose repressor protein (LacI), which comprised 12-13 substitutions at 329 positions and could be used to identify rheostat, toggle, and neutral positions. Combined hLPYK and LacI results show that positions with strong phylogenetic patterns of change are more likely to exhibit rheostat substitution outcomes than neutral or toggle outcomes. Furthermore, phylogenetic patterns were more successful at identifying rheostat positions than were co-evolutionary or eigenvector centrality measures of evolutionary change.


Subject(s)
Amino Acid Substitution , DNA/chemistry , Escherichia coli Proteins/chemistry , Evolution, Molecular , Lac Repressors/chemistry , Pyruvate Kinase/chemistry , Adenosine Diphosphate/chemistry , Adenosine Diphosphate/metabolism , Binding Sites , Cloning, Molecular , Computational Biology/methods , DNA/genetics , DNA/metabolism , Escherichia coli/classification , Escherichia coli/genetics , Escherichia coli/metabolism , Escherichia coli Proteins/genetics , Escherichia coli Proteins/metabolism , Gene Expression , Genetic Vectors/chemistry , Genetic Vectors/metabolism , Humans , Kinetics , Lac Repressors/genetics , Lac Repressors/metabolism , Models, Molecular , Mutation , Phosphoenolpyruvate/chemistry , Phosphoenolpyruvate/metabolism , Phylogeny , Protein Binding , Protein Conformation, alpha-Helical , Protein Conformation, beta-Strand , Protein Interaction Domains and Motifs , Pyruvate Kinase/genetics , Pyruvate Kinase/metabolism , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Structure-Activity Relationship , Thermodynamics
16.
Front Microbiol ; 12: 628308, 2021.
Article in English | MEDLINE | ID: mdl-33679651

ABSTRACT

The pyruvate kinase (PYK) isozyme from Thermoanaerobacterium saccharolyticum (TsPYK) has previously been used in metabolic engineering for improved ethanol production. This isozyme belongs to a subclass of PYK isozymes that include an extra C-domain. Like other isozymes that include this extra C-domain, we found that TsPYK is activated by AMP and ribose-5-phosphate (R5P). Our use of sugar-phosphate analogs generated a surprising result in that IMP and GMP are allosteric inhibitors (rather than activators) of TsPYK. We believe this to be the first report of any PYK isozyme being inhibited by IMP and GMP. A truncated protein that lacks the extra C-domain is also inhibited by IMP. A screen of several other bacterial PYK enzymes (include several that have the extra-C domain) indicates that the inhibition by IMP is specific to only a subset of those isozymes.

17.
J Biol Chem ; 296: 100047, 2021.
Article in English | MEDLINE | ID: mdl-33168628

ABSTRACT

Conventionally, most amino acid substitutions at "important" protein positions are expected to abolish function. However, in several soluble-globular proteins, we identified a class of nonconserved positions for which various substitutions produced progressive functional changes; we consider these evolutionary "rheostats". Here, we report a strong rheostat position in the integral membrane protein, Na+/taurocholate (TCA) cotransporting polypeptide, at the site of a pharmacologically relevant polymorphism (S267F). Functional studies were performed for all 20 substitutions (S267X) with three substrates (TCA, estrone-3-sulfate, and rosuvastatin). The S267X set showed strong rheostatic effects on overall transport, and individual substitutions showed varied effects on transport kinetics (Km and Vmax) and substrate specificity. To assess protein stability, we measured surface expression and used the Rosetta software (https://www.rosettacommons.org) suite to model structure and stability changes of S267X. Although buried near the substrate-binding site, S267X substitutions were easily accommodated in the Na+/TCA cotransporting polypeptide structure model. Across the modest range of changes, calculated stabilities correlated with surface-expression differences, but neither parameter correlated with altered transport. Thus, substitutions at rheostat position 267 had wide-ranging effects on the phenotype of this integral membrane protein. We further propose that polymorphic positions in other proteins might be locations of rheostat positions.


Subject(s)
Organic Anion Transporters, Sodium-Dependent/genetics , Polymorphism, Genetic , Symporters/genetics , Amino Acid Substitution , Biological Transport , Estrone/analogs & derivatives , Estrone/metabolism , HEK293 Cells , Humans , Kinetics , Organic Anion Transporters, Sodium-Dependent/chemistry , Protein Stability , Rosuvastatin Calcium/metabolism , Symporters/chemistry , Taurocholic Acid/metabolism
18.
Arch Biochem Biophys ; 695: 108633, 2020 11 30.
Article in English | MEDLINE | ID: mdl-33075302

ABSTRACT

A linked-function theory for allostery allows for a differentiation between those protein-ligand interactions that contribute the most to ligand binding and those protein-ligand interactions that contribute to the allosteric mechanism. This potential distinction is the basis for analogue studies used to determine which chemical moieties on the allosteric effector contribute to allostery. Although less recognized, the same separation of functions is possible for substrate-enzyme interactions. When evaluating allosteric regulation in human liver pyruvate kinase, the use of a range of monovalent cations (K+, NH4+, Rb+, Cs+, cyclohexylammonium+ and Tris+) altered substrate (phosphoenolpyruvate; PEP) affinity, but maintained similar allosteric responses to the allosteric activator, fructose-1,6-bisphosphate (Fru-1,6-BP). Because crystal structures indicate that the active site monovalent cation interacts directly with the phosphate moiety of the bound PEP substrate, we questioned if the phosphate moiety might contribute to substrate binding, but not to the allosteric mechanism. Here, we demonstrate that the binding of oxalate, a non-phosphorylated substrate/product analogue, is allosterically enhanced by Fru-1,6-BP. That observation is consistent with the concept that the phosphate moiety of PEP is not required for the allosteric function, even though that moiety likely contributes to determining substrate affinity.


Subject(s)
Fructosediphosphates/chemistry , Liver/enzymology , Phosphoenolpyruvate/chemistry , Pyruvate Kinase/chemistry , Allosteric Regulation , Fructosediphosphates/metabolism , Humans , Phosphoenolpyruvate/metabolism , Pyruvate Kinase/metabolism
19.
Med Chem Res ; 29(7): 1133-1146, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32641900

ABSTRACT

To achieve the full potential of pharmacogenomics, one must accurately predict the functional out comes that arise from amino acid substitutions in proteins. Classically, researchers have focused on understanding the consequences of individual substitutions. However, literature surveys have shown that most substitutions were created at evolutionarily conserved positions. Awareness of this bias leads to a shift in perspective, from considering the outcomes of individual substitutions to understanding the roles of individual protein positions. Conserved positions tend to act as "toggle" switches, with most substitutions abolishing function. However, nonconserved positions have been found equally capable of affecting protein function. Indeed, many nonconserved positions act like functional dimmer switches ("rheostat" positions): This is revealed when multiple substitutions are made at a single position. Each substitution has a different functional outcome; the set of substitutions spans arange of outcomes. Finally, some nonconserved positions appear neutral, capable of accommodating all amino acid types without modifying function. This manuscript reviews the currently-known properties of rheost at positions, with examples shown for pyruvate kinase, organic anion transporting polypeptide 1B1, the beta-lactamase inhibitory protein, and angiotensin-converting enzyme 2. Outcomes observed for rheostat positions have implications for the rational design of drug analogs and allosteric drugs. Furthermore, this new framework - comprising three types of protein positions - provides a new approach to interpreting disease and population-based databases of amino acid changes. In conclusion, although a full understanding of substitution out comes at rheostat positions poses a challenge, utilization of this new frame of reference will further advance the application of pharmacogenomics.

20.
Biophys J ; 118(12): 2966-2978, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32479745

ABSTRACT

The allosteric coupling constant in K-type allosteric systems is defined as a ratio of the binding of substrate in the absence of effector to the binding of the substrate in the presence of a saturating concentration of effector. As a result, the coupling constant is itself an equilibrium value comprised of a ΔH and a TΔS component. In the scenario in which TΔS completely compensates ΔH, no allosteric influence of effector binding on substrate affinity is observed. However, in this "silent coupling" scenario, the presence of effector causes a change in the ΔH associated with substrate binding. A suggestion has now been made that "silent modulators" are ideal drug leads because they can be modified to act as either allosteric activators or inhibitors. Any attempt to rationally design the effector to be an allosteric activator or inhibitor is likely to be benefitted by knowledge of the mechanism that gives rise to coupling. Hydrogen/deuterium exchange with mass spectrometry detection has now been used to identify regions of proteins that experience conformational and/or dynamic changes in the allosteric regulation. Here, we demonstrate the expected temperature dependence of the allosteric regulation of rabbit muscle pyruvate kinase by Ala to demonstrate that this effector reduces substrate (phosphoenolpyruvate) affinity at 35°C and at 10°C but is silent at intermediate temperatures. We then explore the use of hydrogen/deuterium exchange with mass spectrometry to evaluate the areas of the protein that are modified in the mechanism that gives rise to the silent coupling between Ala and phosphoenolpyruvate. Many of the peptide regions of the protein identified as changing in this silent system (Ala as the effector) were included in changes previously identified for allosteric inhibition by Phe.


Subject(s)
Peptides , Proteins , Allosteric Regulation , Animals , Entropy , Rabbits , Thermodynamics
SELECTION OF CITATIONS
SEARCH DETAIL
...