Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Opt Express ; 28(21): 31209-31215, 2020 Oct 12.
Article in English | MEDLINE | ID: mdl-33115099

ABSTRACT

We reduce the intensity noise of laser light by using an electro-optic modulator and acousto-optic modulator in series. The electro-optic modulator reduces noise at high frequency (10 kHz to 1 MHz), while the acousto-optic modulator sets the average power of the light and reduces noise at low frequency (up to 10 kHz). The light is then used to trap single sodium atoms in an optical tweezer, where the lifetime of the atoms is limited by parametric heating due to laser noise at twice the trapping frequency. With our noise eater, the noise is reduced by up to 15 dB at these frequencies and the lifetime of the atom in the optical tweezer is increased by an order of magnitude to around 6 seconds. Our technique is general and acts directly on the laser beam, expanding laser options for sensitive optical trapping applications.

2.
Opt Lett ; 43(7): 1534-1537, 2018 Apr 01.
Article in English | MEDLINE | ID: mdl-29601023

ABSTRACT

Light that carries linear or angular momentum can interact with a mechanical object, giving rise to optomechanical effects. In particular, a photon can transfer its intrinsic angular momentum to an object when the object either absorbs the photon or changes the photon polarization, as in an action/reaction force pair. Here, we demonstrate resonant driving of torsional mechanical modes of a single-mode tapered optical nanofiber using spin angular momentum. The nanofiber torsional mode spectrum is characterized by polarimetry, showing narrow natural resonances (Q≈2,000). By sending amplitude-modulated light through the nanofiber, we resonantly drive individual torsional modes as a function of the light polarization. By varying the input polarization to the fiber, we find the largest amplification of a mechanical oscillation (>35 dB) is observed when driving the system with light containing longitudinal spin on the nanofiber waist. These results present optical nanofibers as a platform suitable for quantum spin-optomechanics experiments.

SELECTION OF CITATIONS
SEARCH DETAIL
...