Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Infect ; 87(6): 516-523, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37802471

ABSTRACT

OBJECTIVES: COVID-19 has caused significant challenges for infection prevention measures and patient flow in hospital admission pathways. We aimed to assess the impact of replacing laboratory PCR with molecular point-of-care testing (mPOCT) for respiratory viruses including SARS-CoV-2, within an Acute Oncology Service (AOS). METHODS: This pre- and post-implementation study took place in the AOS of a large teaching hospital, in Southampton, UK. We collected data from two periods: November 25th, 2019 to November 24th, 2020, when respiratory virus testing utilised laboratory PCR, and December 1st, 2020 to May 31st, 2021 following the introduction of mPOCT. The primary outcome was the time to results. RESULTS: 2189 patients were tested in the pre-implementation period and 1540 in the post implementation period. Median (IQR) time to results was 5.8 h (4.2-10.6) pre-implementation and 1.9 h (1.5-3.0) post-implementation (difference -3.6 h [95%CI to -3.8 to -3.5]; p < 0.0001). Median time spent in assessment areas was 6.0 h (4.1-7.9) pre-implementation and 5.5 h (3.8-7.4) post-implementation (p < 0.0001). 20 (0.9%) patients admitted via AOS assessment unit developed hospital-acquired respiratory virus infection pre-implementation versus 0 (0%) post-implementation (p = 0.031). CONCLUSIONS: Routine mPOCT for respiratory viruses, including SARS-CoV-2, was associated with a reduced time to results, reduced time in assessment areas, and a reduction in the rates of hospital-acquired respiratory virus infection in an acute oncology assessment unit.


Subject(s)
COVID-19 , Viruses , Humans , SARS-CoV-2 , COVID-19/diagnosis , Point-of-Care Testing , Hospitalization
2.
Radiother Oncol ; 107(3): 346-51, 2013 Jun.
Article in English | MEDLINE | ID: mdl-23707151

ABSTRACT

BACKGROUND AND PURPOSE: The EORTC 22043-30041 trial investigates the role of the addition of androgen suppression to post-operative radiotherapy in patients who have undergone radical prostatectomy. As part of the quality assurance of radiotherapy (QART) a Dummy Run (DR) procedure was performed. MATERIALS AND METHOD: The protocol included detailed and published delineation guidelines. Participating institutions digitally submitted radiotherapy treatment volumes and a treatment plan for a standard clinical case. Submissions were centrally reviewed using the VODCA software platform. RESULTS: Thirty-eight submissions from thirty-one institutions were reviewed. Six were accepted without comments. Twenty-three were accepted with comments on one or more items: target volume delineation (22), OAR delineation (23), planning and dosimetry (3) or treatment verification (1). Nine submissions were rejected requiring resubmission, seven for target volume delineation reasons alone. Intervention to highlight the importance of delineation guidelines was made prior to the entry of the first patient in the trial. After this, a lower percentage of resubmissions was required. CONCLUSIONS: The EORTC 22043-30041 Dummy Run highlights the need for timely and effective QART in clinical trials. The variation in target volume and OAR definition demonstrates that clinical guidelines and radiotherapy protocols are not a substitute for QART procedures. Early intervention in response to the Dummy Run improved protocol understanding.


Subject(s)
Prostatic Neoplasms/radiotherapy , Quality Assurance, Health Care , Humans , Male , Organs at Risk , Practice Guidelines as Topic , Prostatic Neoplasms/pathology , Tumor Burden
3.
Radiother Oncol ; 103(3): 279-86, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22633815

ABSTRACT

OBJECTIVE: Quality assurance (QA) in clinical trials is essential to ensure treatment is safely and effectively delivered. As QA requirements have increased in complexity in parallel with evolution of radiation therapy (RT) delivery, a need to facilitate digital data exchange emerged. Our objective is to present the platform developed for the integration and standardization of QART activities across all EORTC trials involving RT. METHODS: The following essential requirements were identified: secure and easy access without on-site software installation; integration within the existing EORTC clinical remote data capture system; and the ability to both customize the platform to specific studies and adapt to future needs. After retrospective testing within several clinical trials, the platform was introduced in phases to participating sites and QART study reviewers. RESULTS: The resulting QA platform, integrating RT analysis software installed at EORTC Headquarters, permits timely, secure, and fully digital central DICOM-RT based data review. Participating sites submit data through a standard secure upload webpage. Supplemental information is submitted in parallel through web-based forms. An internal quality check by the QART office verifies data consistency, formatting, and anonymization. QART reviewers have remote access through a terminal server. Reviewers evaluate submissions for protocol compliance through an online evaluation matrix. Comments are collected by the coordinating centre and institutions are informed of the results. CONCLUSIONS: This web-based central review platform facilitates rapid, extensive, and prospective QART review. This reduces the risk that trial outcomes are compromised through inadequate radiotherapy and facilitates correlation of results with clinical outcomes.


Subject(s)
Computer Communication Networks/standards , Quality Assurance, Health Care , Radiation Oncology/standards , Radiology Information Systems/standards , Europe , Humans , Information Storage and Retrieval/standards , Multicenter Studies as Topic , Radiotherapy/standards , Software
4.
Radiother Oncol ; 103(3): 287-92, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22560713

ABSTRACT

INTRODUCTION: The phase III EORTC 22033-26033/NCIC CE5 intergroup trial compares 50.4 Gy radiotherapy with up-front temozolomide in previously untreated low-grade glioma. We describe the digital EORTC individual case review (ICR) performed to evaluate protocol radiotherapy (RT) compliance. METHODS: Fifty-eight institutions were asked to submit 1-2 randomly selected cases. Digital ICR datasets were uploaded to the EORTC server and accessed by three central reviewers. Twenty-seven parameters were analysed including volume delineation, treatment planning, organ at risk (OAR) dosimetry and verification. Consensus reviews were collated and summary statistics calculated. RESULTS: Fifty-seven of seventy-two requested datasets from forty-eight institutions were technically usable. 31/57 received a major deviation for at least one section. Relocation accuracy was according to protocol in 45. Just over 30% had acceptable target volumes. OAR contours were missing in an average of 25% of cases. Up to one-third of those present were incorrectly drawn while dosimetry was largely protocol compliant. Beam energy was acceptable in 97% and 48 patients had per protocol beam arrangements. CONCLUSIONS: Digital RT plan submission and review within the EORTC 22033-26033 ICR provide a solid foundation for future quality assurance procedures. Strict evaluation resulted in overall grades of minor and major deviation for 37% and 32%, respectively.


Subject(s)
Brain Neoplasms/radiotherapy , Electronic Health Records/standards , Glioma/radiotherapy , Quality Assurance, Health Care , Antineoplastic Agents, Alkylating/therapeutic use , Brain Neoplasms/drug therapy , Combined Modality Therapy , Dacarbazine/analogs & derivatives , Dacarbazine/therapeutic use , Glioma/drug therapy , Humans , Radiotherapy Dosage , Temozolomide
SELECTION OF CITATIONS
SEARCH DETAIL
...