Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Data ; 11(1): 518, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38773110

ABSTRACT

Turbulent mixing in the ocean, lakes and reservoirs facilitates the transport of momentum, heat, nutrients, and other passive tracers. Turbulent fluxes are proportional to the rate of turbulent kinetic energy dissipation per unit mass, ε. A common method for ε measurements is using microstructure profilers with shear probes. Such measurements are now widespread, and a non-expert practitioner will benefit from best practice guidelines and benchmark datasets. As a part of the Scientific Committee on Oceanographic Research (SCOR) working group on "Analysing ocean turbulence observations to quantify mixing" (ATOMIX), we compiled a collection of five benchmark data of ε from measurements of turbulence shear using shear probes. The datasets are processed using the ATOMIX recommendations for best practices documented separately. Here, we describe and validate the datasets. The benchmark collection is from different types of instruments and covers a wide range of environmental conditions. These datasets serve to guide the users to test their ε estimation methods and quality-assurance metrics, and to standardize their data for archiving.

2.
Sci Rep ; 13(1): 14816, 2023 Sep 08.
Article in English | MEDLINE | ID: mdl-37684359

ABSTRACT

Energetic tidal currents in the Arctic play an important role in local mixing processes, but they are primarily confined to the shelves and continental slopes due to topographic trapping north of their critical latitude. Recent studies employing idealized models have suggested that the emergence of higher harmonic tidal waves along these slopes could serve as a conduit for tidal energy transmission into the Arctic Basin. Here we provide observational support from an analysis of yearlong observations from three densely-instrumented oceanographic moorings spanning 30 km across the continental slope north of Svalbard ([Formula: see text]81.3[Formula: see text]N). Full-depth current records show strong barotropic diurnal tidal currents, dominated by the K[Formula: see text] constituent. These sub-inertial currents vary sub-seasonally and are strongest at the 700-m isobath due to the topographic trapping. Coinciding with the diurnal tide peak in summer 2019, we observe strong baroclinic semidiurnal currents exceeding 10 cm s[Formula: see text] between 500 m and 1000 m depth about 10 km further offshore at the outer mooring. In this semidiurnal band, we identify super-inertial K[Formula: see text] waves, and present evidence that their frequency, timing, polarization, propagation direction and depths are consistent with the generation as higher harmonics of the topographically trapped K[Formula: see text] tide at the continental slope.

3.
Nat Commun ; 14(1): 1022, 2023 Mar 07.
Article in English | MEDLINE | ID: mdl-36882411

ABSTRACT

The transport of oceanic heat towards the Antarctic continental margin is central to the mass balance of the Antarctic Ice Sheet. Recent modeling efforts challenge our view on where and how the on-shelf heat flux occurs, suggesting that it is largest where dense shelf waters cascade down the continental slope. Here we provide observational evidence supporting this claim. Using records from moored instruments, we link the downslope flow of dense water from the Filchner overflow to upslope and on-shelf flow of warm water.

4.
Sci Data ; 9(1): 472, 2022 08 03.
Article in English | MEDLINE | ID: mdl-35922449

ABSTRACT

Ocean turbulent mixing is a key process in the global climate system, regulating ocean circulation and the uptake and redistribution of heat, carbon, nutrients, oxygen and other tracers. In polar oceans, turbulent heat transport additionally affects the sea ice mass balance. Due to the inaccessibility of polar regions, direct observations of turbulent mixing are sparse in the Arctic Ocean. During the year-long drift expedition "Multidisciplinary drifting Observatory for the Study of Arctic Climate" (MOSAiC) from September 2019 to September 2020, we obtained an unprecedented data set of vertical profiles of turbulent dissipation rate and water column properties, including oxygen concentration and fluorescence. Nearly 1,700 profiles, covering the upper ocean down to approximately 400 m, were collected in sets of 3 or more consecutive profiles every day, and complemented with several intensive sampling periods. This data set allows for the systematic assessment of upper ocean mixing in the Arctic, and the quantification of turbulent heat and nutrient fluxes, and can help to better constrain turbulence parameterizations in ocean circulation models.

5.
Nat Commun ; 13(1): 158, 2022 Jan 10.
Article in English | MEDLINE | ID: mdl-35013282

ABSTRACT

The subpolar Southern Ocean is a critical region where CO2 outgassing influences the global mean air-sea CO2 flux (FCO2). However, the processes controlling the outgassing remain elusive. We show, using a multi-glider dataset combining FCO2 and ocean turbulence, that the air-sea gradient of CO2 (∆pCO2) is modulated by synoptic storm-driven ocean variability (20 µatm, 1-10 days) through two processes. Ekman transport explains 60% of the variability, and entrainment drives strong episodic CO2 outgassing events of 2-4 mol m-2 yr-1. Extrapolation across the subpolar Southern Ocean using a process model shows how ocean fronts spatially modulate synoptic variability in ∆pCO2 (6 µatm2 average) and how spatial variations in stratification influence synoptic entrainment of deeper carbon into the mixed layer (3.5 mol m-2 yr-1 average). These results not only constrain aliased-driven uncertainties in FCO2 but also the effects of synoptic variability on slower seasonal or longer ocean physics-carbon dynamics.

6.
Sci Data ; 7(1): 275, 2020 08 21.
Article in English | MEDLINE | ID: mdl-32826909

ABSTRACT

Tidal and wind-driven near-inertial currents play a vital role in the changing Arctic climate and the marine ecosystems. We compiled 429 available moored current observations taken over the last two decades throughout the Arctic to assemble a pan-Arctic atlas of tidal band currents. The atlas contains different tidal current products designed for the analysis of tidal parameters from monthly to inter-annual time scales. On shorter time scales, wind-driven inertial currents cannot be analytically separated from semidiurnal tidal constituents. Thus, we include 10-30 h band-pass filtered currents, which include all semidiurnal and diurnal tidal constituents as well as wind-driven inertial currents for the analysis of high-frequency variability of ocean dynamics. This allows for a wide range of possible uses, including local case studies of baroclinic tidal currents, assessment of long-term trends in tidal band kinetic energy and Arctic-wide validation of ocean circulation models. This atlas may also be a valuable tool for resource management and industrial applications such as fisheries, navigation and offshore construction.

7.
Sci Rep ; 9(1): 13448, 2019 09 17.
Article in English | MEDLINE | ID: mdl-31530826

ABSTRACT

The Lofoten Basin is the largest oceanic reservoir of heat in the Nordic Seas, and the site of important heat fluxes to the atmosphere. An intense permanent anticyclone in the basin impacts the regional hydrography, energetics, and ecosystem. Repeated sampling of this Lofoten Basin Eddy from dedicated cruises, autonomous profiling gliders, and acoustically-tracked subsurface floats enables the documentation of its dynamics and energetics over the course of 15 months. The eddy core, in nearly solid-body rotation, exhibits an unusually low vertical vorticity close to the local inertial frequency and important strain rates at the periphery. Subsurface floats as deep as 800 m are trapped within the core for their entire deployment duration (up to 15 months). The potential vorticity is reduced in the core by two orders of magnitude relative to the surroundings, creating a barrier. In the winter, this barrier weakens and lateral exchanges and heat flux between the eddy and the surroundings increase, apparently the result of dynamical instabilities and a possible eddy merger. Based on a simple energy budget, the dissipation timescale for the eddy energy is three years, during which wintertime convection seasonally modulates potential and kinetic energy.

8.
Sci Rep ; 9(1): 9222, 2019 06 25.
Article in English | MEDLINE | ID: mdl-31239470

ABSTRACT

A large retreat of sea-ice in the 'stormy' Atlantic Sector of the Arctic Ocean has become evident through a series of record minima for the winter maximum sea-ice extent since 2015. Results from the Norwegian young sea ICE (N-ICE2015) expedition, a five-month-long (Jan-Jun) drifting ice station in first and second year pack-ice north of Svalbard, showcase how sea-ice in this region is frequently affected by passing winter storms. Here we synthesise the interdisciplinary N-ICE2015 dataset, including independent observations of the atmosphere, snow, sea-ice, ocean, and ecosystem. We build upon recent results and illustrate the different mechanisms through which winter storms impact the coupled Arctic sea-ice system. These short-lived and episodic synoptic-scale events transport pulses of heat and moisture into the Arctic, which temporarily reduce radiative cooling and henceforth ice growth. Cumulative snowfall from each sequential storm deepens the snow pack and insulates the sea-ice, further inhibiting ice growth throughout the remaining winter season. Strong winds fracture the ice cover, enhance ocean-ice-atmosphere heat fluxes, and make the ice more susceptible to lateral melt. In conclusion, the legacy of Arctic winter storms for sea-ice and the ice-associated ecosystem in the Atlantic Sector lasts far beyond their short lifespan.

SELECTION OF CITATIONS
SEARCH DETAIL
...