Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Front Mol Neurosci ; 16: 1121479, 2023.
Article in English | MEDLINE | ID: mdl-37256078

ABSTRACT

Introduction: Various methods have been used to determine the frequency components of seizures in scalp electroencephalography (EEG) and in intracortical recordings. Most of these methods rely on subjective or trial-and-error criteria for choosing the appropriate bandwidth for filtering the EEG or local field potential (LFP) signals to establish the frequency components that contribute most to the initiation and maintenance of seizure activity. The empirical mode decomposition (EMD) with the Hilbert-Huang transform is an unbiased method to decompose a time and frequency variant signal into its component non-stationary frequencies. The resulting components, i.e., the intrinsic mode functions (IMFs) objectively reflect the various non-stationary frequencies making up the original signal. Materials and methods: We employed the EMD method to analyze the frequency components and relative power of spontaneous electrographic seizures recorded in the dentate gyri of mice during the epileptogenic period. Epilepsy was induced in mice following status epilepticus induced by suprahippocampal injection of kainic acid. The seizures were recorded as local field potentials (LFP) with electrodes implanted in the dentate gyrus. We analyzed recording segments that included a seizure (mean duration 28 s) and an equivalent time period both before and after the seizure. Each segment was divided into non-overlapping 1 s long epochs which were then analyzed to obtain their IMFs (usually 8-10), the center frequencies of the respective IMF and their spectral root-mean-squared (RMS) power. Results: Our analysis yielded unbiased identification of the spectral components of seizures, and the relative power of these components during this pathological brain activity. During seizures, the power of the mid frequency components increased while the center frequency of the first IMF (with the highest frequency) dramatically decreased, providing mechanistic insights into how local seizures are generated. Discussion: We expect this type of analysis to provide further insights into the mechanisms of seizure generation and potentially better seizure detection.

2.
Headache ; 62(5): 577-587, 2022 05.
Article in English | MEDLINE | ID: mdl-35467010

ABSTRACT

OBJECTIVE: The objective of this study is to characterize the effects of the sleep-wake cycle on neurovascular and behavioral characteristics of cortical spreading depression (CSD). BACKGROUND: There is an important bi-directional relationship between migraine and the sleep-wake cycle, but the basic mechanisms of this relationship are poorly understood. METHODS: We have developed a minimally invasive microchip system to continuously monitor cerebral blood volume (CBV) with optical intrinsic signal (OIS), head movement, and multiple other physiological and behavioral parameters in freely behaving mice over weeks. Behavior is also monitored with simultaneous video recording. This system can also be used to intermittently trigger and record CSD and accompanying neurovascular and behavioral responses. CSD was triggered optically in different stages of the sleep-wake cycle. RESULTS: The optical stimulus threshold to trigger CSD was significantly higher in the wake state compared to sleep (stimulation duration = 16.4 ± 9.7 s vs. 10.8 ± 5.8 s, p = 0.037, n = 6 mice). CSD evoked in the wake versus sleep state produced changes in CBV that were smaller (largest relative change -4.5 ± 5.0% ∆OIS vs. -14.3 ± 8.5% ∆OIS, p = 0.001) and shorter in duration (33:22 ± 6:37 vs. 49:42 ± 8:05 min:s, p = 0.012, n = 6 mice). The threshold for CSD and kinetics of associated CBV changes were correlated with the time since falling asleep or awakening (n = 47 CSDs in 6 mice). CSD triggered in the wake state was associated with a transient freezing behavior. CSD triggered during sleep typically caused a transient awakening and behavioral response. This was followed by a return to sleep until recovery from the sustained phase of decreased CBV that occurred 30-60 min later, at which time there was consistent awakening with behaviors similar to those that occurred at CSD onset. CSD triggered in the wake state evoked a transient decrease in heart rate (from 11.9 ± 0.8 to 9.6 ± 0.8 Hz, p = 0.002, n = 5), whereas when triggered in the sleep state there was a transient increase in HR (from 7.5 ± 0.4 Hz to 9.3 ± 1.1 Hz, p = 0.016, n = 5). CONCLUSIONS: The sleep-wake cycle has significant effects on CSD that may have relevance to the clinical presentations of migraine and brain injury.


Subject(s)
Cortical Spreading Depression , Migraine Disorders , Animals , Cortical Spreading Depression/physiology , Humans , Mice , Sleep
3.
Nat Neurosci ; 24(10): 1488-1500, 2021 10.
Article in English | MEDLINE | ID: mdl-34426698

ABSTRACT

Brain organoids represent a powerful tool for studying human neurological diseases, particularly those that affect brain growth and structure. However, many diseases manifest with clear evidence of physiological and network abnormality in the absence of anatomical changes, raising the question of whether organoids possess sufficient neural network complexity to model these conditions. Here, we explore the network-level functions of brain organoids using calcium sensor imaging and extracellular recording approaches that together reveal the existence of complex network dynamics reminiscent of intact brain preparations. We demonstrate highly abnormal and epileptiform-like activity in organoids derived from induced pluripotent stem cells from individuals with Rett syndrome, accompanied by transcriptomic differences revealed by single-cell analyses. We also rescue key physiological activities with an unconventional neuroregulatory drug, pifithrin-α. Together, these findings provide an essential foundation for the utilization of brain organoids to study intact and disordered human brain network formation and illustrate their utility in therapeutic discovery.


Subject(s)
Brain/physiopathology , Epilepsy/physiopathology , Neurons , Adult , Benzothiazoles/pharmacology , Brain/growth & development , Calcium Signaling , Child, Preschool , Epilepsy/diagnostic imaging , Female , Humans , Induced Pluripotent Stem Cells , Methyl-CpG-Binding Protein 2/genetics , Nerve Net/physiopathology , Neurogenesis/genetics , Neuroimaging , Rett Syndrome/diagnostic imaging , Rett Syndrome/physiopathology , Single-Cell Analysis , Synapses , Toluene/analogs & derivatives , Toluene/pharmacology , Transcriptome
4.
J Physiol ; 599(20): 4545-4559, 2021 10.
Article in English | MEDLINE | ID: mdl-34438476

ABSTRACT

A minimally invasive, microchip-based approach enables continuous long-term recording of brain neurovascular activity, heart rate, and head movement in freely behaving rodents. This approach can also be used for transcranial optical triggering of cortical activity in mice expressing channelrhodopsin. The system uses optical intrinsic signal recording to measure cerebral blood volume, which under baseline conditions is correlated with spontaneous neuronal activity. The arterial pulse and breathing can be quantified as a component of the optical intrinsic signal. Multi-directional head movement is measured simultaneously with a movement sensor. A separate movement tracking element through a camera enables precise mapping of overall movement within an enclosure. Data is processed by a dedicated single board computer, and streamed from multiple enclosures to a central server, enabling simultaneous remote monitoring and triggering in many subjects. One application of this system described here is the characterization of changes in of cerebral blood volume, heart rate and behaviour that occur with the sleep-wake cycle over weeks. Another application is optical triggering and recording of cortical spreading depression (CSD), the slowly propagated wave of neurovascular activity that occurs in the setting of brain injury and migraine aura. The neurovascular features of CSD are remarkably different in the awake vs. anaesthetized state in the same mouse. With its capacity to continuously and synchronously record multiple types of physiological and behavioural data over extended time periods in combination with intermittent triggering of brain activity, this inexpensive method has the potential for widespread practical application in rodent research. KEY POINTS: Recording and triggering of brain activity in mice and rats has typically required breaching the skull, and experiments are often performed under anaesthesia A minimally invasive microchip system enables continuous recording and triggering of neurovascular activity, and analysis of heart rate and behaviour in freely behaving rodents over weeks This system can be used to characterize physiological and behavioural changes associated with the sleep-wake cycle over extended time periods This approach can also be used with mice expressing channelrhodopsin to trigger and record cortical spreading depression (CSD) in freely behaving subjects. The neurovascular responses to CSD are remarkably different under anaesthesia compared with the awake state. The method is inexpensive and straightforward to employ at a relatively large scale. It enables translational investigation of a wide range of physiological and pathological conditions in rodent models of neurological and systemic diseases.


Subject(s)
Cortical Spreading Depression , Rodentia , Animals , Brain , Channelrhodopsins , Mice , Rats
5.
Ann Neurol ; 86(5): 793-800, 2019 11.
Article in English | MEDLINE | ID: mdl-31498917

ABSTRACT

OBJECTIVE: The aim of this study was to identify specific ictal hand postures (HPs) as localizing signs of the epileptogenic zone (EZ) in patients with frontal or temporal lobe epilepsy. METHODS: In this study, we retrospectively analyzed ictal semiology of 489 temporal lobe or frontal lobe seizures recorded over a 6-year period at the Seizure Disorder Center at University of California, Los Angeles in the USA (45 patients) or at the C. Munari Epilepsy Surgery Center at Niguarda Hospital in Milan, Italy (34 patients). Our criterion for EZ localization was at least 2 years of seizure freedom after surgery. We analyzed presence and latency of ictal HP. We then examined whether specific initial HPs are predictive for EZ localization. RESULTS: We found that ictal HPs were present in 72.5% of patients with frontal and 54.5% of patients with temporal lobe seizures. We divided HPs into 6 classes depending on the reciprocal position of the fingers ("fist," "cup," "politician's fist," "pincer," "extended hand," "pointing"). We found a striking correlation between EZ localization and ictal HP. In particular, fist and pointing HPs are strongly predictive of frontal lobe EZ; cup, politician's fist, and pincer are strongly predictive of temporal lobe EZ. INTERPRETATION: Our study offers simple ictal signs that appear to clarify differential diagnosis of temporal versus frontal lobe EZ localization. These results are meant to be used as a novel complementary tool during presurgical evaluation for epilepsy. At the same time, they give us important insight into the neurophysiology of hand movements. ANN NEUROL 2019;86:793-800.


Subject(s)
Epilepsy, Frontal Lobe/diagnosis , Epilepsy, Temporal Lobe/diagnosis , Hand , Posture , Adult , Diagnosis, Differential , Female , Humans , Male , Middle Aged , Retrospective Studies , Seizures
6.
Neuron ; 97(5): 1032-1048.e5, 2018 03 07.
Article in English | MEDLINE | ID: mdl-29518357

ABSTRACT

Variants of TREM2 are associated with Alzheimer's disease (AD). To study whether increasing TREM2 gene dosage could modify the disease pathogenesis, we developed BAC transgenic mice expressing human TREM2 (BAC-TREM2) in microglia. We found that elevated TREM2 expression reduced amyloid burden in the 5xFAD mouse model. Transcriptomic profiling demonstrated that increasing TREM2 levels conferred a rescuing effect, which includes dampening the expression of multiple disease-associated microglial genes and augmenting downregulated neuronal genes. Interestingly, 5xFAD/BAC-TREM2 mice showed further upregulation of several reactive microglial genes linked to phagocytosis and negative regulation of immune cell activation. Moreover, these mice showed enhanced process ramification and phagocytic marker expression in plaque-associated microglia and reduced neuritic dystrophy. Finally, elevated TREM2 gene dosage led to improved memory performance in AD models. In summary, our study shows that a genomic transgene-driven increase in TREM2 expression reprograms microglia responsivity and ameliorates neuropathological and behavioral deficits in AD mouse models.


Subject(s)
Alzheimer Disease/genetics , Disease Models, Animal , Gene Dosage/genetics , Membrane Glycoproteins/genetics , Microglia/physiology , Phenotype , Receptors, Immunologic/genetics , Alzheimer Disease/pathology , Animals , Animals, Newborn , Cells, Cultured , Cellular Reprogramming Techniques/methods , Female , Humans , Male , Membrane Glycoproteins/biosynthesis , Memory/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Microglia/pathology , Organ Culture Techniques , Receptors, Immunologic/biosynthesis
7.
Nat Neurosci ; 19(9): 1197-200, 2016 09.
Article in English | MEDLINE | ID: mdl-27500406

ABSTRACT

The synapse specificity of long-term potentiation (LTP) ensures that no interference arises from inputs irrelevant to the memory to be encoded. In hippocampi of aged (21-28 months) mice, LTP was relayed to unstimulated synapses, blemishing its synapse specificity. Diminished levels of the K(+)/Cl(-) cotransporter KCC2 and a depolarizing GABAA receptor-mediated synaptic component following LTP were the most likely causes for the spreading of potentiation, unveiling mechanisms hindering information storage in the aged brain and identifying KCC2 as a potential target for intervention.


Subject(s)
Excitatory Postsynaptic Potentials/physiology , Hippocampus/metabolism , Long-Term Potentiation/physiology , Symporters/metabolism , Synapses/metabolism , Animals , Humans , Receptors, GABA-A/metabolism , K Cl- Cotransporters
8.
Neuropharmacology ; 88: 91-8, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25261782

ABSTRACT

Perisynaptic and extrasynaptic δ subunit-containing GABAA receptors (δ-GABAARs) mediate tonic conductances in many neurons. On principal cells of the neocortex and hippocampus they comprise α4 subunits, whereas they usually contain α1 on various interneurons. Specific characteristics of δ-GABAARs are their pharmacology and high plasticity. In particular δ-GABAARs are sensitive to low concentrations of neurosteroids (NS) and during times of altered NS production (stress, puberty, ovarian cycle and pregnancy) δ-GABAARs expression varies in many neurons regardless of the α subunits they contain, with direct consequences for neuronal excitability and network synchrony. For example δ-GABAARs plasticity on INs underlies modifications in hippocampal γ oscillations during pregnancy or over the ovarian cycle. Most δ-GABAAR-expressing INs in CA3 stratum pyramidale (SP) are parvalbumin (PV) + INs, whose fundamental role in γ oscillations generation and control has been extensively investigated. In this study we reduced or deleted δ-subunits in PV + INs, with the use of a PV/Cre-Gabrd/floxed genetic system. We find that in vitro CA3 γ oscillations of both PV-Gabrd(+/-)and PV-Gabrd(-/-) mice are characterized by higher frequencies than WT controls. The increased frequencies could be lowered to control levels in PV-Gabrd(+/-) by the NS allopregnanolone (3α,5α-tetrahydroprogesterone, 100 nM) but not the synthetic δ-GABAAR positive allosteric modulator 4-Chloro-N-[2-(2-thienyl)imidazo[1,2-a]pyridin-3-yl] benzamide (DS-2, 10 µM). This is consistent with the idea that DS-2, in contrast to ALLO, selectively targets α4/δ-GABAARs but not the α1/δ-GABAARs found on INs. Therefore, development of drugs selective for IN-specific α1/δ-GABAARs may be useful in neurological and psychiatric conditions correlated with altered PV + IN function and aberrant γ oscillations.


Subject(s)
CA3 Region, Hippocampal/physiology , Gamma Rhythm/physiology , Interneurons/physiology , Parvalbumins/metabolism , Receptors, GABA-A/deficiency , Animals , Benzamides/pharmacology , CA3 Region, Hippocampal/drug effects , GABA Modulators/pharmacology , Gamma Rhythm/drug effects , Immunohistochemistry , Interneurons/drug effects , Male , Mice, Transgenic , Microelectrodes , Microscopy, Confocal , Neurotransmitter Agents/pharmacology , Pregnanolone/pharmacology , Receptors, GABA-A/genetics , Tissue Culture Techniques
9.
Front Cell Neurosci ; 8: 222, 2014.
Article in English | MEDLINE | ID: mdl-25157218

ABSTRACT

GABAA receptors containing δ subunits (δ-GABAARs) are GABA-gated ion channels with extra- and perisynaptic localization, strong sensitivity to neurosteroids (NS), and a high degree of plasticity. In selective brain regions they are expressed on specific principal cells and interneurons (INs), and generate a tonic conductance that controls neuronal excitability and oscillations. Plasticity of δ-GABAARs in principal cells has been described during states of altered NS synthesis including acute stress, puberty, ovarian cycle, pregnancy and the postpartum period, with direct consequences on neuronal excitability and network dynamics. The defining network events implicated in cognitive function, memory formation and encoding are γ oscillations (30-120 Hz), a well-timed loop of excitation and inhibition between principal cells and PV-expressing INs (PV + INs). The δ-GABAARs of INs can modify γ oscillations, and a lower expression of δ-GABAARs on INs during pregnancy alters γ frequency recorded in vitro. The ovarian cycle is another physiological event with large fluctuations in NS levels and δ-GABAARs. Stages of the cycle are paralleled by swings in memory performance, cognitive function, and mood in both humans and rodents. Here we show δ-GABAARs changes during the mouse ovarian cycle in hippocampal cell types, with enhanced expression during diestrus in principal cells and specific INs. The plasticity of δ-GABAARs on PV-INs decreases the magnitude of γ oscillations continuously recorded in area CA1 throughout several days in vivo during diestrus and increases it during estrus. Such recurring changes in γ magnitude were not observed in non-cycling wild-type (WT) females, cycling females lacking δ-GABAARs only on PV-INs (PV-Gabrd (-/-)), and in male mice during a time course equivalent to the ovarian cycle. Our findings may explain the impaired memory and cognitive performance experienced by women with premenstrual syndrome (PMS) or premenstrual dysphoric disorder (PMDD).

10.
Curr Opin Neurobiol ; 26: 57-63, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24650505

ABSTRACT

About 20% of the total number of neurons in the brain are interneurons (INs) that utilize GABA as their neurotransmitter. The receptors for GABA have been well studied in principal cells, but INs also express GABA receptors, in particular the GABAA type (GABAARs), which may also be activated in an autocrine manner by the transmitter released by the INs themselves. As more and more neurological and psychiatric disorders are being discovered to be linked to malfunction or deficits of INs, this review will cover how INs communicate with each other through the activation of synaptic and extrasynaptic GABAARs. The properties of GABAARs specific to INs may differ significantly from those found on principal cells to open the prospect of developing IN-specific drugs.


Subject(s)
Interneurons/classification , Interneurons/metabolism , Receptors, GABA-A/metabolism , Synapses/metabolism , Synaptic Transmission/physiology , Animals , Cholecystokinin/metabolism , Humans , Nerve Net/metabolism , Neuroglia/metabolism , Somatostatin/metabolism
11.
Front Neural Circuits ; 7: 144, 2013.
Article in English | MEDLINE | ID: mdl-24062647

ABSTRACT

Gamma (γ) oscillations (30-120 Hz), an emergent property of neuronal networks, correlate with memory, cognition and encoding. In the hippocampal CA3 region, locally generated γ oscillations emerge through feedback between inhibitory parvalbumin-positive basket cells (PV+BCs) and the principal (pyramidal) cells. PV+BCs express δ-subunit-containing GABA(A)Rs (δ-GABA(A)Rs) and NMDA receptors (NMDA-Rs) that balance the frequency of γ oscillations. Neuroactive steroids (NS), such as the progesterone-derived (3α,5α)-3-hydroxy-pregnan-20-one (allopregnanolone; ALLO), modulate the expression of δ-GABA(A)Rs and the tonic conductance they mediate. Pregnancy produces large increases in ALLO and brain-region-specific homeostatic changes in δ-GABA(A)Rs expression. Here we show that in CA3, where most PV+ interneurons (INs) express δ-GABA(A)Rs, expression of δ-GABA(A)Rs on INs diminishes during pregnancy, but reverts to control levels within 48 h postpartum. These anatomical findings were corroborated by a pregnancy-related increase in the frequency of kainate-induced CA3 γ oscillations in vitro that could be countered by the NMDA-R antagonists D-AP5 and PPDA. Mimicking the typical hormonal conditions during pregnancy by supplementing 100 nM ALLO lowered the γ frequencies to levels found in virgin or postpartum mice. Our findings show that states of altered NS levels (e.g., pregnancy) may provoke perturbations in γ oscillatory activity through direct effects on the GABAergic system, and underscore the importance of δ-GABA(A)Rs homeostatic plasticity in maintaining constant network output despite large hormonal changes. Inaccurate coupling of NS levels to δ-GABA(A)R expression may facilitate abnormal neurological and psychiatric conditions such as epilepsy, post-partum depression, and post-partum psychosis, thus providing insights into potential new treatments.


Subject(s)
Brain Waves/physiology , CA3 Region, Hippocampal/metabolism , Interneurons/metabolism , Nerve Net/metabolism , Parvalbumins/metabolism , Receptors, GABA-A/metabolism , Animals , Female , Mice , Mice, Inbred C57BL , Mice, Knockout , Pregnancy , Receptors, GABA-A/genetics
12.
Epilepsia ; 53 Suppl 9: 89-101, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23216582

ABSTRACT

Epilepsies consist of a spectrum of neurologic disorders typically characterized by unpredictable and dysfunctional network behaviors in the central nervous system (CNS), which lead to discrete episodes of large bouts of uncontrolled neuronal synchrony that interfere with the normal functioning of the brain. Temporal lobe epilepsy (TLE) is accompanied by changes in interneuronal innervation and modifications in different γ-aminobutyric acid (GABA)(A) receptor subunits. Hormones play an important role in modulating the overall excitability of neurons, and at the same time hormonal pathways are frequently modified during epilepsy. This review focuses on TLE-correlated modifications of GABAergic transmission, and in particular on the implications of some of our own findings related to GABA(A) Rs containing the δ subunits (δ-GABA(A) Rs). These are extra- or perisynaptic GABA(A) Rs that mediate tonic inhibition, a major component of the inhibitory mechanism in the brain. The most potent endogenous modulators of δ-GABA(A) Rs are neurosteroids, which act as positive allosteric modulators. Plasticity of δ-GABA(A) Rs during TLE consists of down-regulation of the subunit in the dentate gyrus granule cells (DGGCs), while being up-regulated in interneurons. Surprisingly, the level of tonic inhibition in DGGCs remains unchanged, consistent with the idea that it becomes mediated by GABA(A) Rs containing other subunits. In parallel, tonic inhibition in a TLE model ceases to be sensitive to neurosteroid potentiation. In contrast, as predicted by the anatomic plasticity, interneuronal tonic current is increased, and remains sensitive to neurosteroids. These findings have important pharmacologic implications. Where neurosteroids normally have sedative and anticonvulsant effects, bimodal and cell-type specific modulations in their natural targets might weaken the inhibitory control on the dentate gate, under circumstances of altered neurosteroids levels (stress, ovarian cycle, or the postpartum period).


Subject(s)
Epilepsy, Temporal Lobe/drug therapy , Epilepsy, Temporal Lobe/metabolism , GABA Modulators , Neurotransmitter Agents/metabolism , Receptors, GABA-A/drug effects , Animals , Brain Chemistry , Disease Models, Animal , GABA Modulators/metabolism , GABA Modulators/pharmacology , Humans , Neurotransmitter Agents/biosynthesis , Neurotransmitter Agents/pharmacology
13.
J Neurosci ; 29(30): 9592-601, 2009 Jul 29.
Article in English | MEDLINE | ID: mdl-19641122

ABSTRACT

Alterations in GABA(A) receptor (GABA(A)R) expression and function, similar to those we described previously during pregnancy in the mouse dentate gyrus, may also occur in other brain regions. Here we show, using immunohistochemical techniques, a decreased delta subunit-containing GABA(A)R (deltaGABA(A)R) expression in the dentate gyrus, hippocampal CA1 region, thalamus, and striatum but not in the cerebral cortex. In the face of the highly elevated neurosteroid levels during pregnancy, which can act on deltaGABA(A)Rs, it may be beneficial to decrease the number of neurosteroid-sensitive receptors to maintain a steady-state level of neuronal excitability throughout pregnancy. Consistent with this hypothesis, the synaptic input/output (I/O) relationship in the dentate gyrus molecular layer in response to lateral perforant path stimulation was shifted to the left in hippocampal slices from pregnant compared with virgin mice. The addition of allopregnanolone, at levels comparable with those found during pregnancy (100 nM), shifted the I/O curves in pregnant mice back to virgin levels. There was a decreased threshold to induce epileptiform local field potentials in slices from pregnant mice compared with virgin, but allopregnanolone reverted the threshold for inducing epileptiform activity to virgin levels. According to these data, neuronal excitability is increased in pregnant mice in the absence of allopregnanolone attributable to brain region-specific downregulation of deltaGABA(A)R expression. In brain regions, such as the cortex, that do not exhibit alterations in deltaGABA(A)R expression, there were no changes in the I/O relationship during pregnancy. Similarly, no changes in network excitability were detected in pregnant Gabrd(-/-) mice that lack deltaGABA(A)Rs, suggesting that changes in neuronal excitability during pregnancy are attributable to alterations in the expression of these receptors. Our findings indicate that alterations in deltaGABA(A)R expression during pregnancy result in brain region-specific increases in neuronal excitability that are restored by the high levels of allopregnanolone under normal conditions but under pathological conditions may result in neurological and psychiatric disorders associated with pregnancy and postpartum.


Subject(s)
Brain/physiology , Neuronal Plasticity/physiology , Neurons/physiology , Receptors, GABA-A/metabolism , Synaptic Transmission/physiology , Action Potentials/physiology , Animals , Down-Regulation/physiology , Female , Hippocampus/physiology , In Vitro Techniques , Mice , Mice, Inbred C57BL , Mice, Knockout , Potassium Chloride/metabolism , Pregnancy , Pregnanolone/deficiency , Pregnanolone/metabolism , Receptors, GABA-A/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...