Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
BMC Plant Biol ; 22(1): 324, 2022 Jul 05.
Article in English | MEDLINE | ID: mdl-35790933

ABSTRACT

BACKGROUND: Contamination-free culture is a prerequisite for the success of in vitro - based plant biotechnology. Aseptic initiation is an extremely strenuous stride, particularly in woody species. Meanwhile, over-sterilization is potentially detrimental to plant tissue. The recent rise of machine learning algorithms in plant tissue culture proposes an advanced interpretive tool for the combinational effect of influential factors for such in vitro - based steps. RESULTS: A multilayer perceptron (MLP) model of artificial neural network (ANN) was implemented with four inputs, three sterilizing chemicals at various concentrations and the immersion time, and two outputs, disinfection efficiency (DE) and negative disinfection effect (NDE), intending to assess twenty-seven disinfection procedures of Pistacia vera L. seeds. Mercury chloride (HgCl2; 0.05-0.2%; 5-15 min) appears the most effective with 100% DE, then hydrogen peroxide (H2O2; 5.25-12.25%; 10-30 min) with 66-100% DE, followed by 27-77% DE for sodium hypochlorite (NaOCl; 0.54-1.26% w/v; 10-30 min). Concurrently, NDE was detected, including chlorosis, hard embryo germination, embryo deformation, and browning tissue, namely, a low repercussion with NaOCl (0-14%), a moderate impact with H2O2 (6-46%), and pronounced damage with HgCl2 (22-100%). Developed ANN showed R values of 0.9658, 0.9653, 0.8937, and 0.9454 for training, validation, testing, and all sets, respectively, which revealed the uprightness of the model. Subsequently, the model was linked to multi-objective genetic algorithm (MOGA) which proposed an optimized combination of 0.56% NaOCl, 12.23% H2O2, and 0.068% HgCl2 for 5.022 min. The validation assay reflects the high utility and accuracy of the model with maximum DE (100%) and lower phytotoxicity (7.1%). CONCLUSION: In one more case, machine learning algorithms emphasized their ability to resolve commonly encountered problems. The current successful implementation of MLP-MOGA inspires its application for more complicated plant tissue culture processes.


Subject(s)
Pistacia , Algorithms , Disinfection , Hydrogen Peroxide , Neural Networks, Computer
2.
Environ Technol ; 43(4): 617-629, 2022 Jan.
Article in English | MEDLINE | ID: mdl-32677543

ABSTRACT

Large amounts of secondary date waste (pulp and seeds) are produced and discarded in Tunisia without proper valorisation methods. To study the possibility of valorising different varieties of Tunisian date waste (pulp and seeds) via anaerobic digestion, batch biochemical methane potential (BMP) tests were carried out under mesophilic temperature. The bio-methane production curves were fitted to the model of modified Gompertz in search of the kinetic parameters. The bio-chemical characterisation of the substrates from different varieties (total and volatile solids, COD and contents in carbohydrates, proteins, lipids, polyphenols) was realised. Principal component analysis (PCA) was used to investigate the correlations between the model parameters and biochemical variables. Results show that the biochemical compositions of date pulp and seeds strongly depend on the varieties. The BMP are in the range of 0.295-0.345 and 0.267-0.327 Nm3 CH4·kg COD-1 for pulp and seeds respectively, resulting from the significant biochemical variance among the varieties. The BMP of date seeds was significantly correlated with their VS/TS ratio, carbohydrate and protein contents (p < 0.05). For the pulp, significant correlation was found between BMP, carbohydrate and lipid contents. PCA shows that certain varieties (like pulp and seeds of Deglet Nour and seeds of Bejou) are most suitable for being valorised by anaerobic digestion. The most suitable date varieties for this innovative approach were revealed. This research provided useful knowledge for bioconversion of waste date pulp and seeds to biomass energy.


Subject(s)
Phoeniceae , Anaerobiosis , Carbohydrates , Methane , Tunisia
3.
Braz. J. Pharm. Sci. (Online) ; 58: e18871, 2022. tab, graf
Article in English | LILACS-Express | LILACS | ID: biblio-1374535

ABSTRACT

Abstract Phoenix dactylifera L. has traditionally been used as a medicine in many cultures. The aim of this study was to evaluate the nutritional properties, aromatic compounds, total phenolic content and the antioxidant activity of ten ripe date fruit varieties grown in Tunisia. Sugar profiles were analyzed by high performance liquid chromatography, while fatty acid compounds were detected by gas chromatography and aromatic compounds were analyzed by GC-Electron Impact Mass Spectroscopy. Total phenolic contents were measured using colorimetric methods, whereas antioxidant capacities were evaluated in vitro using DPPH and ABTS radicals. It has been found that total sugars are the predominant component in all date varieties, followed by moisture, along with moderate amounts of proteins, ash, and fats. Multivariate tests based on the volatile compounds profile showed significant differences among varieties. Between the sixty-two volatile compounds detected, alcohols, aldehydes and unsaturated hydrocarbons constituted the main chemical classes. The date varieties exhibited strong antioxidant potential that correlated with phenolic content. In conclusion date varieties can play a major role in human nutrition and health because of their wide range of valuable nutritional components and natural antioxidants that could potentially be considered as a functional food ingredient.

4.
Plant Physiol Biochem ; 167: 990-998, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34587574

ABSTRACT

Hydrogen peroxide (H2O2) priming was proved to be effective to boost salt and drought stress tolerance in Capsicum annuum L. Hither, hydrotime (HT) approach, a population-based threshold model-germination dependence on water availability, was introduced to account for the effects of reduced water potential on H2O2-primed seeds in progress toward germination. Pre-optimized H2O2 concentrations (1 and 10 mM for 24 h at 25 °C) were applied. Subsequently, seeds were germinated over a range of water potential (Ψ) (0 to -1.2 MPa) induced by sodium chloride (NaCl) and polyethylene glycol (PEG-6000) at 25 °C. We suggest that H2O2-priming affects differently the three derived items of HT model; induced lower hydrotime constant (θH) thus, revealed more rapid germination particularly evident with PEG, shifted the threshold or base water potential for 50% germination (Ψb(50)) towards a more negative value in NaCl culture, reflected a better salinity tolerance, though, the opposite effect was recorded with PEG, and reduced the standard deviation (σΨb), proved a better uniformity of the germination process for both cultures. Thus, H2O2-priming increased GRg (1/tg) at all Ψ>Ψb(g) which is due to both a lower Ψb(50) and a smaller θH in the primed seeds for NaCl culture and primarily owing to reducing θH with no positive effect on Ψb(50) for PEG culture. A normalized time-scale, for comparing responses, was introduced and confirmed the aforementioned impact. Therefore, the crosstalk between H2O2 molecule and different cell pathways generates a constructive response in accordance with imposed stress.


Subject(s)
Capsicum , Germination , Hydrogen Peroxide/pharmacology , Seeds , Sodium Chloride/pharmacology , Water
5.
Mol Biol Rep ; 48(1): 335-346, 2021 Jan.
Article in English | MEDLINE | ID: mdl-33389534

ABSTRACT

Sixteen pomological traits were employed to characterize the diversity of 30 fig accessions collected mainly from Southeastern Tunisia and maintained at CFPA 'El Gordhab', Tataouine, in Southeastern Tunisia. Additionally, 13 simple sequence repeat (SSR) loci were analyzed to detect the genetic diversity of the 30 fig accessions. In this study, qualitative data (fruit shape, fruit external color, fruit internal color, abscission of the stalk from the twig, skin peeling, fruit skin firmness) showed morphological variation within accessions. A highly significant difference (p < .01) among accessions was revealed for all the quantitative traits. The first three components (PC1, PC2, and PC3) of PCA accounted for 52.99% of the total variability. PC1, PC2, and PC3 accounted respectively for 28.02, 13.05, and 11.91% of the total variance. The most discriminating morphological parameters were fruit length and diameter, stalk length and diameter, neck length and diameter, stalk and flesh thickness, fruit shape, skin peeling, and skin firmness. Concerning the molecular results, 40 alleles were revealed. The number of alleles ranged between 2 to 6 with a mean of 3.08 alleles per locus. The observed heterozygosity (Ho) ranged from 0.03 (LMFC21, LMFC23, and LMFC32) to 0.83 (LMFC30) with an average of 0.43. The expected heterozygosity (He) varied from 0.03 (LMFC21, LMFC 23 and LMFC32) to 0.74 (LMFC30) with an average of 0.37. UPMGA cluster analysis and PCA grouped the accessions in 6 groups. Our results showed that the SSR markers used detected low genetic diversity within the accessions studied.


Subject(s)
Ficus/genetics , Genetic Variation , Microsatellite Repeats/genetics , Alleles , Ficus/growth & development , Heterozygote , Phenotype , Tunisia
6.
Food Res Int ; 128: 108807, 2020 02.
Article in English | MEDLINE | ID: mdl-31955767

ABSTRACT

In this study, the untargeted phytochemical profile of non-edible parts of pomegranate (i.e., flowers, leaves and peels) was depicted by using untargeted metabolomics. Each sample was in vitro digested and then fermented simulating a large intestinal process, then monitoring the changes of phenolic bioaccessibility. The most abundant compounds in pomegranate extracts were polyphenols, terpenoids, sterols, alkaloids and amino acids. The untargeted metabolomic approach revealed a transformation of flavonoids over 24 h of in vitro fermentation. In particular, an increase in the % bioaccessibility for phenolic acids and tyrosols in flowers (probably due to the insoluble dietary fibre content, i.e., 27.1 g 100 g-1) was observed. Accordingly, the highest % bioaccessibility was detected after 24 h of in vitro large intestine fermentation for flower (i.e., 53.8%). Results showed that non-edible parts of pomegranate could be used as ingredients for the development of potential value-added food and industrial products.


Subject(s)
Bioreactors , Flowers/chemistry , Metabolomics , Plant Leaves/chemistry , Pomegranate/chemistry , Digestion/physiology , Fermentation
7.
Bot Stud ; 60(1): 13, 2019 Jul 10.
Article in English | MEDLINE | ID: mdl-31292768

ABSTRACT

BACKGROUND: Salinity is a significant environmental stress factor limiting crops productivity. Barley (Hordeum vulgare L.) has a natural tolerance to salinity stress, making it an interesting study object in stress biology research. In the present study, for the first time the effect of salinity stress on barley inflorescence developmental stages was investigated. Five spring barley genotypes irrigated with saline water (12.5 ds/m NaCl) were compared to controls treated with normal tap water. We measured abscisic acid (ABA) concentrations in the apical, central and basal sections of the immature inflorescence at green anther (GA) stage. The role of ABA in spikelet primordia development, atrophy and abortion and final yield was evaluated. RESULTS: A time course experiment starting from double ridge until green anther (GA) stages revealed that salinity reduced the length of spike developmental stages in all genotypes causing shortened of the plant life cycle. The shortened plant life cycle negatively affected plant height and number of tillers/plant. Salinity also affected spikelet primordia development. In both control and salinity treated plants apical spikelet abortion started in late awn primordium (AP) stage. However, under salinity treatment, significantly more spikelets were aborted, thus directly affecting plant yield potential. ABA, which plays a role in the spikelet/floret abortion process, was markedly elevated in the base and apex of salt treated spikes correlating with an increased spikelet abortion in these regions. CONCLUSIONS: Overall, salinity treatment reduced all plant and yield-related parameters investigated and turned some of the correlations among them from positive to negative or vice versa. Investigations of ABA role in floral development and phase duration of barley spike showed that, ABA regulates the spikelet/floret abortion process affecting the yield potential under salinity and control conditions.

8.
J Food Sci Technol ; 55(9): 3606-3615, 2018 Sep.
Article in English | MEDLINE | ID: mdl-30150819

ABSTRACT

The comprehensive phenolic fingerprints of flowers, peels and leaves of two Tunisian Punica granatum L. cultivars, namely Nabli and Gabsi, were investigated. The highest phenolic content was recorded in the Nabli flowers, followed by Gabsi peels extracts (152.6 and 125.8 mg gallic acid equivalent 100 g-1, respectively) while flavonoids and flavonols were highest in Gabsi peels (19.2 and 26.0 mg Rutin equivalent per 100 g-1). Besides, the antioxidant capacity was the highest in Gabsi peels (144.4 mg gallic acid equivalent 100 g-1) and in Nabli flowers (161.6 mg gallic acid equivalent per 100 g-1. Methanol extracts of all three plant portions of both cultivars were screened by ultra-high-performance liquid chromatography coupled to quadruple time of flight mass spectrometry, and the identified phenolics were further quantified. Nabli cultivar showed higher contents of flavonoids (in flowers and leaves), while phenolic acids were abundant in Gabsi leaves. Multivariate statistics highlighted differences in phenolic profile among organs and cultivars. These results showed that the pomegranate portions investigated are a valuable source of bioactive compounds with health-promoting properties, mainly belonging to the phenolic class of flavonoids.

9.
Molecules ; 23(3)2018 Mar 08.
Article in English | MEDLINE | ID: mdl-29518035

ABSTRACT

Due to its high tolerance to abiotic stress, barley (Hordeum vulgare) is cultivated in many arid areas of the world. In the present study, we evaluate the tolerance to water stress (drought) in nine accessions of "Ardhaoui" barley landraces from different regions of Tunisia. The genetic diversity of the accessions is evaluated with six SSR markers. Seedlings from the nine accessions are subjected to water stress by completely stopping irrigation for three weeks. A high genetic diversity is detected among the nine accessions, with no relationships between genetic distance and geographical or ecogeographical zone. The analysis of growth parameters and biochemical markers in the water stress-treated plants in comparison to their respective controls indicated great variability among the studied accessions. Accession 2, from El May Island, displayed high tolerance to drought. Increased amounts of proline in water-stressed plants could not be correlated with a better response to drought, as the most tolerant accessions contained lower levels of this osmolyte. A good correlation was established between the reduction of growth and degradation of chlorophylls and increased levels of malondialdehyde and total phenolics. These biochemical markers may be useful for identifying drought tolerant materials in barley.


Subject(s)
Adaptation, Biological , Droughts , Hordeum/chemistry , Hordeum/metabolism , Stress, Physiological , Biomarkers , Genes, Plant , Genetic Variation , Hordeum/classification , Hordeum/genetics , Photosynthesis , Phylogeny , Reactive Oxygen Species
10.
Sci Total Environ ; 571: 763-71, 2016 Nov 15.
Article in English | MEDLINE | ID: mdl-27450252

ABSTRACT

Elevated [CO2] and salinity in the soils are considered part of the effects of future environmental conditions in arid and semi-arid areas. While it is known that soil salinization decreases plant growth, an increased atmospheric [CO2] may ameliorate the negative effects of salt stress. However, there is a lack of information about the form in which inorganic nitrogen source may influence plant performance under both conditions. Single factor responses and the interactive effects of two [CO2] (380 and 800ppm), three different NO3(-)/NH4(+) ratios in the nutrient solution (100/0, 50/50 and 0/100, with a total N concentration of 3.5mM) and two NaCl concentrations (0 and 80mM) on growth, leaf gas exchange parameters in relation to root hydraulic conductance and N-assimilating enzymes of broccoli (Brassica oleracea L. var. Italica) plants were determined. The results showed that a reduced NO3(-) or co-provision of NO3(-) and NH4(+) could be an optimal source of inorganic N for broccoli plants. In addition, elevated [CO2] ameliorated the effect of salt exposure on the plant growth through an enhanced rate of photosynthesis, even at low N-concentration. However, NO3(-) or NO3(-)/NH4(+) co-provision display differential plant response to salt stress regarding water balance, which was associated to N metabolism. The results may contribute to our understanding of N-fertilization modes under increasing atmospheric [CO2] to cope with salt stress, where variations in N nutrition significantly influenced plant response.


Subject(s)
Brassica/physiology , Carbon Dioxide/metabolism , Nitrogen/metabolism , Salinity , Water/metabolism , Stress, Physiological
11.
J Med Food ; 19(3): 266-73, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26836214

ABSTRACT

Growing concerns about food safety and environmental protection enhanced the need for new and safe plant disease control strategies. The chemical composition of the three essential oils (EOs) extracted from leaves and fruits of Schinus terebinthifolius and leaves of Schinus molle, growing in Tunisia, was studied by GC and GC-MS. In all, 12 compounds were identified. The oils were mainly composed of terpene compounds. α-Pinene, α-phellandrene, and D-limonene were the major constituents. The aim of the current study was to evaluate the in vitro antimicrobial effectiveness of three EOs derived from plants of genus Schinus and extracted from leaves and fruits of S. terebinthifolius and leaves of S. molle. Both antifungal and antibacterial activities of the EOs were examined. The antifungal activity of the studied EOs was investigated against Colletotrichum acutatum and Botrytis cinerea in comparison with the systemic fungicide azoxystrobin used at 0.8 µL mL(-1). The antibacterial activity was evaluated against three strains of Gram-positive (G+ve) bacteria (Bacillus megaterium, Bacillus mojavensis and Clavibacter michiganensis) and four strains of Gram-negative (G-ve) bacteria (Escherichia coli, Xanthomonas campestris, Pseudomonas savastanoi, and Pseudomonas syringae pv. phaseolicola) compared with the synthetic antibiotic tetracycline at a concentration of 1600 µg mL(-1). The minimum inhibitory concentration of the studied EOs has been evaluated against the above microorganisms using the 96-well microplate method. Tested microorganisms exhibited different levels of sensitivity to each tested EO. All investigated EOs reduced the fungal mycelial growth when used at low concentrations from 250 to 1000 ppm and from 2000 to 8000 ppm against C. acutatum and B. cinerea, respectively. Higher concentrations of the same EOs exhibited a fungicidal effect against both mitosporic fungi. The EO extracted from leaves of S. terebinthifolius significantly inhibited the growth of tested bacterial strains. Nevertheless, E. coli showed a weak resistance toward the same EO and a high resistance toward the other two tested EOs. Finally, P. savastanoi and P. syringae pv. phaseolicola showed a high resistance toward all tested EOs.


Subject(s)
Anacardiaceae/chemistry , Anti-Bacterial Agents/pharmacology , Antifungal Agents/pharmacology , Bacterial Infections/microbiology , Mycoses/microbiology , Oils, Volatile/pharmacology , Plant Diseases/microbiology , Plant Oils/pharmacology , Anti-Bacterial Agents/chemistry , Antifungal Agents/chemistry , Bacteria/drug effects , Drug Evaluation, Preclinical , Fungi/drug effects , Humans , Oils, Volatile/chemistry , Plant Leaves/chemistry , Tunisia
12.
Food Funct ; 7(3): 1319-28, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26887343

ABSTRACT

Bioactive extracts were obtained from powdered carob pulp through an ultrasound extraction process and then evaluated in terms of antioxidant activity. Ten minutes of ultrasonication at 375 Hz were the optimal conditions leading to an extract with the highest antioxidant effects. After its chemical characterization, which revealed the preponderance of gallotannins, the extract (free and microencapsulated) was incorporated in yogurts. The microspheres were prepared using an extract/sodium alginate ratio of 100/400 (mg mg(-1)) selected after testing different ratios. The yogurts with the free extract exhibited higher antioxidant activity than the samples added with the encapsulated extracts, showing the preserving role of alginate as a coating material. None of the forms significantly altered the yogurt's nutritional value. This study confirmed the efficiency of microencapsulation to stabilize functional ingredients in food matrices maintaining almost the structural integrity of polyphenols extracted from carob pulp and furthermore improving the antioxidant potency of the final product.


Subject(s)
Antioxidants/chemistry , Drug Compounding/methods , Fabaceae/chemistry , Food Additives/chemistry , Plant Extracts/chemistry , Polyphenols/chemistry , Yogurt/analysis , Antioxidants/isolation & purification , Food Additives/isolation & purification , Plant Extracts/isolation & purification , Polyphenols/isolation & purification , Ultrasonics
13.
J Sci Food Agric ; 96(2): 392-403, 2016 Jan 30.
Article in English | MEDLINE | ID: mdl-25623939

ABSTRACT

BACKGROUND: The complex interactions between CO2 increase and salinity were investigated in relation to decreased N supply, in order to determine the nutritional quality of broccoli (Brassica oleracea L. var. italica) plants under these conditions. Three different decreased N fertilisation regimes (NO3(-)/NH4(+) ratios of 100:0, 50:50 and 0:100 respectively) were combined with ambient (380 ppm) and elevated (800 ppm) [CO2 ] under non-saline (0 mmol L(-1) NaCl) and saline (80 mmol L(-1) NaCl) conditions. Nutrients (minerals, soluble protein and total amino acids) and natural antioxidants (glucosinolates, phenolic acids, flavonoids and vitamin C) were determined. RESULTS: In NH4(+) -fed broccoli plants, a marked growth reduction was shown and a redistribution of amino acids to cope with NH4(+) toxicity resulted in higher levels of indolic glucosinolate and total phenolic compounds. However, the positive effect of the higher [CO2] - ameliorating adverse effects of salinity--was only observed when N was supplied as NO3(-). Under reduced N fertilisation, the total glucosinolates were increased by a decreased NO3(-)/NH4 (+) ratio and elevated [CO2] but were unaffected by salinity. CONCLUSION: Under future climatic challenges, such as increased salinity and elevated [CO2], a clear genotypic dependence of S metabolism was observed in broccoli plants. In addition, an influence of the form in which N was supplied on plant nutritional quality was observed; a combined NO3(-)/NH4(+) (50:50) supply allowed broccoli plants not only to deal with NH4(+) toxicity but also to modify their glucosinolate content and profile. Thus, for different modes of N fertilisation, the interaction with climatic factors must be considered in the search for an optimal balance between yield and nutritional quality.


Subject(s)
Brassica/metabolism , Climate Change , Fertilizers/analysis , Nitrogen/pharmacology , Amino Acids/chemistry , Antioxidants , Ascorbic Acid/chemistry , Biomass , Brassica/chemistry , Brassica/drug effects , Glucosinolates/chemistry , Nitrogen/chemistry , Phenols/chemistry , Plant Proteins/metabolism
14.
Hereditas ; 152: 1, 2015.
Article in English | MEDLINE | ID: mdl-28096760

ABSTRACT

BACKGROUND: The common fig (Ficus carica L.) is a gynodioecious species with two sexual forms: male trees (caprifigs) with male and female flowers and female trees that produce only female flowers that will result in the edible fig syconium. In this study the genetic diversity of 20 Tunisian accessions of caprifig is analyzed using SSR markers previously developed for this crop. RESULTS: The results revealed that the 13 pairs of primers used amplified a total of 37 alleles in the accessions studied. The number of alleles per locus ranged from two to six, with a mean value of 2.85 alleles per locus. Observed and expected heterozygosities showed mean values of 0.33 and 0.29 respectively. UPGMA cluster analysis and Principal Component Analysis grouped the caprifig accessions analyzed in three groups. CONCLUSION: The results obtained show a low genetic diversity in the Tunisian accessions of caprifig studied and, in spite of analyzing samples from different geographic regions, no clear groupings based on geographical origin are observed suggesting widespread exchange of caprifig plant material through vegetative propagation among different areas in Tunisia.


Subject(s)
Ficus/genetics , Genetic Variation , Microsatellite Repeats , Alleles , Cluster Analysis , Crops, Agricultural/genetics , DNA, Plant/genetics , Genetic Markers , Heterozygote , Principal Component Analysis
15.
J Exp Bot ; 66(3): 775-87, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25385768

ABSTRACT

Environmental factors including drought stress may modulate plant immune responses and resistance to pathogens. However, the relationship between mechanisms of drought tolerance and resistance to pathogens remained unknown. In this study, the effects of drought stress on polyamine (PA) homeostasis and immune responses were investigated in two grapevine genotypes differing in their drought tolerance; Chardonnay (CHR), as sensitive and Meski (MSK), as tolerant. Under drought conditions, MSK plants showed the lowest leaf water loss and reduction of photosynthetic efficiency, and expressed a lower level of NCED2, a gene involved in abscisic acid biosynthesis, compared with CHR plants. The improved drought tolerance in MSK was also coincident with the highest change in free PAs and up-regulation of the genes encoding arginine decarboxylase (ADC), copper amine-oxidase (CuAO), and PA-oxidases (PAO) and their corresponding enzyme activities. MSK plants also accumulated the highest level of amino acids, including Arg, Glu, Gln, Pro, and GABA, emphasizing the participation of PA-related amino acid homeostasis in drought tolerance. Importantly, drought-tolerant plants also exhibited enhanced phytoalexin accumulation and up-regulation of PR genes, especially PR-2 and Chit4c, compared with the sensitive plants. This is consistent with a lower susceptibility of MSK than CHR to Botrytis cinerea. Data suggest a possible connection between water stress tolerance and immune response in grapevine. Pharmacological experiments revealed that under drought conditions CuAO and PAO pathways were involved in the regulation of photosynthetic efficiency, and also of immune response and resistance of grapevine to a subsequent pathogen attack. These results open new views to improve our understanding of crosstalk between drought tolerance mechanisms and immune response.


Subject(s)
Botrytis/physiology , Droughts , Plant Immunity , Polyamines/metabolism , Vitis/microbiology , Vitis/physiology , Amine Oxidase (Copper-Containing)/metabolism , Homeostasis , Oxidation-Reduction , Oxidoreductases Acting on CH-NH Group Donors/metabolism , Photosystem II Protein Complex/metabolism , Plant Leaves/enzymology , Plant Leaves/genetics , Plant Leaves/immunology , Plant Leaves/physiology , Stress, Physiological , Vitis/genetics , Vitis/immunology , Polyamine Oxidase
16.
Plant Cell Environ ; 36(5): 1056-70, 2013 May.
Article in English | MEDLINE | ID: mdl-23176574

ABSTRACT

Date palm (Phoenix dactylifera) is an important crop providing a valuable nutrition source for people in many countries including the Middle East and North Africa. In recent years, the amount of rain in North Africa and especially in the Tunisian palm grove areas has dropped significantly. We investigated the growth and cell wall remodelling of fruits harvested at three key development stages from trees grown with or without water supply. During development, cell wall solubilization and remodelling was characterized by a decrease of the degree of methylesterification of pectin, an important loss of galactose content and a reduction of the branching of xylan by arabinose in irrigated condition. Water deficit had a profound effect on fruit size, pulp content, cell wall composition and remodelling. Loss of galactose content was not as important, arabinose content was significantly higher in the pectin-enriched extracts from non-irrigated condition, and the levels of methylesterification of pectin and O-acetylation of xyloglucan were lower than in irrigated condition. The lower levels of hydrophobic groups (methylester and O-acetyl) and the less intensive degradation of the hydrophilic galactan, arabinan and arabinogalactan in the cell wall may be implicated in maintaining the hydration status of the cells under water deficit.


Subject(s)
Arecaceae/metabolism , Cell Wall/metabolism , Fruit/growth & development , Water/metabolism , Acetylation , Arecaceae/growth & development , Dehydration , Esterification , Fruit/metabolism , Galactans/metabolism , Galactose/metabolism , Glucans/metabolism , Hydrophobic and Hydrophilic Interactions , Pectins/metabolism , Polysaccharides/metabolism , Solubility , Xylans/metabolism
17.
DNA Res ; 20(1): 67-78, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23248203

ABSTRACT

The degradation of proteins by the 26S proteasome is initiated by protein polyubiquitination mediated by a three-step cascade. The specific ubiquitination of different target proteins is mediated by different classes of E3 ubiquitin ligases, among which the best known are Skp1-Cullin-F-box complexes. Whereas protists, fungi and some vertebrates have a single SKP1 gene, many animal and plant species possess multiple SKP1 homologues. In this paper, we report on the structure, phylogeny and expression of the complete set of rice SKP1 genes (OSKs, Oryza sativa SKP1-like genes). Our analyses indicated that OSK1 and OSK20 belong to a class of SKP1 genes that contain one intron at a conserved position and are highly expressed. In addition, our yeast two-hybrid results revealed that OSK proteins display a differing ability to interact with F-box proteins. However, OSK1 and OSK20 seemed to interact with most of the nine F-box proteins tested. We suggest that rice OSK1 and OSK20 are likely to have functions similar to the Arabidopsis ASK1 and ASK2 genes.


Subject(s)
Gene Expression Regulation, Plant , Genes, Plant , Oryza/chemistry , Oryza/genetics , Plant Proteins/genetics , S-Phase Kinase-Associated Proteins/genetics , Arabidopsis/genetics , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Cloning, Molecular , Databases, Genetic , F-Box Proteins/genetics , F-Box Proteins/metabolism , Multigene Family , Phylogeny , Plant Proteins/metabolism , RNA, Plant/genetics , RNA, Plant/isolation & purification , S-Phase Kinase-Associated Proteins/metabolism , SKP Cullin F-Box Protein Ligases/genetics , SKP Cullin F-Box Protein Ligases/metabolism , Ubiquitin-Protein Ligases/genetics , Ubiquitin-Protein Ligases/metabolism
18.
Rev. bras. farmacogn ; 22(6): 1282-1289, Nov.-Dec. 2012. ilus, tab
Article in English | LILACS | ID: lil-659059

ABSTRACT

Ficus carica L., Moraceae, is one of the first plants that were cultivated by humans, being the fruit an important crop worldwide for dry and fresh consumption. In this work, phenolics and antioxidant potential of dried fruits of seventeen Tunisian F. carica varieties, from green, red and black phenotypes, were assessed for the first time. HPLC-DAD analysis was performed. All samples presented a similar qualitative profile. The phenolics content ranged between 29.18 and 55.56 mg/kg (in black and red phenotypes, respectively) and quercetin-3-O-rutinoside was always the major compound. The antioxidant potential against DPPH•, superoxide and nitric oxide radicals of three varieties representing each phenotype was checked. All samples exhibited activity against the first two radicals in a concentration-dependent way, "Bayoudi" variety being the most effective one (IC25 values of 10.32 and 2.89 µg/ mL, respectively). Nevertheless, only "Hammouri" variety presented some capacity to scavenge nitric oxide radical. Our results reveal nice perspectives for these typical fruits, as they present an interesting phenolic composition and good antiradical activity and may encourage their consumption for health protection.

19.
Ann Bot ; 110(8): 1593-606, 2012 Dec.
Article in English | MEDLINE | ID: mdl-23087127

ABSTRACT

BACKGROUND AND AIMS: Edible bananas originated mainly from two wild species, Musa acuminata Colla (AA) and Musa balbisiana Colla (BB), and triploid cultivars with an AAA, AAB or ABB genome are the most widely used. In the present study, chromosome pairing affinities are investigated in a sterile AB Indian variety and in its fertile colchicine-induced allotetraploid (AABB) derivative to determine the inheritance pattern of the tetraploid genotype. The potential implications of interspecific recombination and chromosomal composition of diploid gametes for Musa improvement are presented. METHODS: The pairing of different chromosome sets at diploid and tetraploid levels was investigated through a combination of conventional cytogenetic and genomic in-situ hybridization (GISH) analyses of meiotic chromosomes, leading to a likelihood model of the pairing behaviour. GISH analysis of mitotic chromosomes was also conducted to reveal the chromosome constitution of hybrids derived from crosses involving the allotetraploid genotype. KEY RESULTS: Analysis of chromosome associations at both ploidy levels suggested that the newly formed allotetraploid behaves as a 'segmental allotetraploid' with three chromosome sets in a tetrasomic pattern, three sets in a likely disomic pattern and the five remaining sets in an intermediate pattern. Balanced and unbalanced diploid gametes were detected in progenies, with the chromosome constitution appearing to be more homogenous in pollen than in ovules. CONCLUSIONS: Colchicine-induced allotetraploids in Musa provide access to the genetic background of natural AB varieties. The segmental inheritance pattern exhibited by the AABB allotetraploid genotype implies chromosome exchanges between M. acuminata and M. balbisiana species and opens new horizons for reciprocal transfer of valuable alleles.


Subject(s)
Chromosome Pairing/genetics , Chromosomes, Plant/genetics , Genome, Plant/genetics , Inheritance Patterns/genetics , Musa/genetics , Tetraploidy , Cytogenetics , DNA, Plant/genetics , Genotype , Germ Cells, Plant , In Situ Hybridization, Fluorescence , Likelihood Functions , Meiosis/genetics , Musa/classification , Musa/cytology , Nucleic Acid Hybridization
20.
ScientificWorldJournal ; 2012: 291435, 2012.
Article in English | MEDLINE | ID: mdl-22956893

ABSTRACT

The comparative responses of two broccoli cultivars (Brassica oleracea var. Italica, cv. Parthenon and cv. Naxos) to a 15 d exposure to different NaCl levels were investigated. Salinity led to increased concentrations of Na(+) and Cl(-) ions in both cultivars, a disruption of the endogenous minerals levels in the shoots and roots-that varied with the cultivar and salt concentration-and decreases in the osmotic potential (Ψ(π)), root hydraulic conductance (L(0)), and stomatal conductance (G(s)). The reduced biomass of Naxos at moderate NaCl indicates greater sensitivity to salinity, compared with Parthenon. Parthenon accumulated more soluble sugars, for osmotic adjustment, whereas Naxos accumulated proline, which gave the two cultivars differing nutritional characteristics. The total glucosinolates (GSLs) content was not affected by salinity in Parthenon while it decreased significantly in Naxos as a consequence of the decrease in the indole GSL. However, Naxos accumulated more aliphatic GSLs under salt stress than Parthenon, which confers on this cultivar a greater nutritional value when cultivated under salinity.These results suggest that, at distinct salinity levels, each broccoli cultivar adopts a specific strategy, indicating the crucial role of the genetic background on the organoleptic and nutritional properties that each cultivar acquires.


Subject(s)
Brassica/drug effects , Brassica/metabolism , Nutritive Value/drug effects , Phenols/metabolism , Plant Roots/drug effects , Plant Roots/metabolism , Proline/metabolism , Salinity , Sodium Chloride/pharmacology , Water/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...