Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Plants (Basel) ; 10(2)2021 Feb 05.
Article in English | MEDLINE | ID: mdl-33562862

ABSTRACT

Hordeum maritimum With. is a wild salt tolerant cereal present in the saline depressions of the Eastern Tunisia, where it significantly contributes to the annual biomass production. In a previous study on shoot tissues it was shown that this species withstands with high salinity at the seedling stage restricting the sodium entry into shoot and modulating over time the leaf synthesis of organic osmolytes for osmotic adjustment. However, the tolerance strategy mechanisms of this plant at root level have not yet been investigated. The current research aimed at elucidating the morphological, physiological and biochemical changes occurring at root level in H. maritimum and in the salt sensitive cultivar Hordeum vulgare L. cv. Lamsi during five-weeks extended salinity (200 mM NaCl), salt removal after two weeks of salinity and non-salt control. H. maritimum since the first phases of salinity was able to compartmentalize higher amounts of sodium in the roots compared to the other cultivar, avoiding transferring it to shoot and impairing photosynthetic metabolism. This allowed the roots of wild plants to receive recent photosynthates from leaves, gaining from them energy and carbon skeletons to compartmentalize toxic ions in the vacuoles, synthesize and accumulate organic osmolytes, control ion and water homeostasis and re-establish the ability of root to grow. H. vulgare was also able to accumulate compatible osmolytes but only in the first weeks of salinity, while soon after the roots stopped up taking potassium and growing. In the last week of salinity stress, the wild species further increased the root to shoot ratio to enhance the root retention of toxic ions and consequently delaying the damages both to shoot and root. This delay of few weeks in showing the symptoms of stress may be pivotal for enabling the survival of the wild species when soil salinity is transient and not permanent.

2.
Plant Physiol Biochem ; 139: 171-178, 2019 Jun.
Article in English | MEDLINE | ID: mdl-30897508

ABSTRACT

To enhance crop productivity and minimize the harmful effects of various environmental stresses, such as salinity and drought, farmers often use mineral fertilizers. However, inadequate or excessive fertilization can reduce plant growth and nutritive quality and contribute to soil degradation and environmental pollution. This study investigated the effects of salinity (0, 100 or 150 mM NaCl) and nitrogen form (sole NO3- or NH4+, or combined NO3-:NH4+ at 25:75 or 50:50) on growth, photosynthesis, and water and ion status of a commercial variety of maize (Zea mays SY Sincero). In the absence of NaCl, the media containing ammonium only or both nitrogen forms had higher aboveground growth rates than that containing nitrate only. Indeed, the maize growth, expressed as leaf dry matter, seen on NH4+ in the absence of salinity, was nearly double the biomass compared to that with NO3-treatment. Irrespective of N form, the presence of NaCl severely reduced leaf and roots growth; the presence of ammonium in the nutrient solution diminished these negative effects. Compared to the NH4+ only and combined treatments, the leaves of plants in the NO3--only medium showed signs of nitrogen deficiency (general chlorosis), which was more pronounced in the lower than upper leaves, indicating that nitrate is partly replaced by chloride during root uptake. NH4+ favored maize growth more than NO3-, especially when exposed to saline conditions, and may improve the plant's capacity to osmotically adjust to salinity by accumulating inorganic solutes.


Subject(s)
Nitrogen/metabolism , Osmoregulation/physiology , Photosynthesis/physiology , Zea mays/growth & development , Ammonium Compounds/metabolism , Osmotic Pressure , Proline/metabolism , Salt Stress , Water/metabolism , Zea mays/physiology
3.
Funct Plant Biol ; 45(11): 1096-1109, 2018 Oct.
Article in English | MEDLINE | ID: mdl-32290971

ABSTRACT

Hordeum maritimum With. (= H. marinum Huds. subsp. marinum, 2n=14) is a wild cereal present in the saline depressions of the Soliman and Kelbia Sebkhas, which contributes significantly to annual biomass production in Tunisia. This species is able to tolerate high NaCl concentrations at the seedling stage without showing symptoms of toxicity; however, the tolerance strategy mechanisms of this plant have not yet been unravelled. Our metabolite analysis, performed on leaves of H. maritimum during extended stress in comparison with Hordeum vulgare L. cv. Lamsi, has revealed an adaptive response of the wild species based on a different temporal accumulation pattern of ions and compatible metabolites. Further, wild and cultivated genotypes with contrasting salt-tolerant behaviour display different pattern of metabolites when salt stress is prolonged over 2 weeks. In particular, when exposed to up to 3 weeks of 200mM NaCl salt stress, H. maritimum is able to maintain lower leaf concentrations of sodium and chloride, and higher concentrations of potassium compared with H. vulgare. This likely restricts sodium entry into plants at the root level, and uses the toxic ions, glycine betaine and low levels of proline for osmotic adjustment. Under prolonged stress, the accumulation of proline increases, reaching the highest levels in concomitance with the decrease of potassium to sodium ratio, the increase of hydrogen peroxide and decrease of chlorophylls. The modulation of proline accumulation over time can be interpreted as an adaptive response to long-term salinity. Moreover, once synthetised glycine betaine is transported but not metabolised, it can contribute together with proline to osmotically balance H. maritimum leaves and protect them from oxidative stress. The 2-3 week delay of H. maritimum in showing the symptoms of stress and damages compared with H. vulgare could be important in the survival of plants when soil salinity is not a permanent condition, but just a transient state of stress.

SELECTION OF CITATIONS
SEARCH DETAIL
...