Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Commun ; 6: 6175, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25629724

ABSTRACT

Pancreatic ductal adenocarcinoma (PDAC) has a grim prognosis with <5% survivors after 5 years. High expression levels of ADAM8, a metalloprotease disintegrin, are correlated with poor clinical outcome. We show that ADAM8 expression is associated with increased migration and invasiveness of PDAC cells caused by activation of ERK1/2 and higher MMP activities. For biological function, ADAM8 requires multimerization and associates with ß1 integrin on the cell surface. A peptidomimetic ADAM8 inhibitor, BK-1361, designed by structural modelling of the disintegrin domain, prevents ADAM8 multimerization. In PDAC cells, BK-1361 affects ADAM8 function leading to reduced invasiveness, and less ERK1/2 and MMP activation. BK-1361 application in mice decreased tumour burden and metastasis of implanted pancreatic tumour cells and provides improved metrics of clinical symptoms and survival in a Kras(G12D)-driven mouse model of PDAC. Thus, our data integrate ADAM8 in pancreatic cancer signalling and validate ADAM8 as a target for PDAC therapy.


Subject(s)
ADAM Proteins/metabolism , Membrane Proteins/metabolism , Molecular Targeted Therapy , Pancreatic Neoplasms/drug therapy , ADAM Proteins/antagonists & inhibitors , Animals , Blotting, Western , Carcinoma, Pancreatic Ductal/enzymology , Carcinoma, Pancreatic Ductal/pathology , Cell Line, Tumor , Cell Movement/drug effects , Extracellular Space/metabolism , Focal Adhesion Protein-Tyrosine Kinases/metabolism , Gene Knockdown Techniques , Humans , Hydroxamic Acids/pharmacology , Hydroxamic Acids/therapeutic use , Integrin beta1/metabolism , Kaplan-Meier Estimate , Matrix Metalloproteinase 14/metabolism , Matrix Metalloproteinase 2/metabolism , Membrane Proteins/antagonists & inhibitors , Mice , Neoplasm Invasiveness , Pancreatic Neoplasms/enzymology , Pancreatic Neoplasms/pathology , Peptides, Cyclic/pharmacology , Peptides, Cyclic/therapeutic use , Phosphorylation/drug effects , Protein Binding/drug effects , Protein Multimerization/drug effects , Protein Processing, Post-Translational , Signal Transduction/drug effects
2.
Eur J Neurosci ; 37(4): 519-31, 2013 Feb.
Article in English | MEDLINE | ID: mdl-23216618

ABSTRACT

We have previously demonstrated that the growth of peripheral nervous system axons is strongly attracted towards limb buds and skin explants in vitro. Here, we show that directed axonal growth towards skin explants of Xenopus laevis in matrigel is associated with expression of matrix metalloproteinase (MMP)-18 and also other MMPs, and that this long-range neurotropic activity is inhibited by the broad-spectrum MMP inhibitors BB-94 and GM6001. We also show that forced expression of MMP-18 in COS-7 cell aggregates enhances axonal growth from Xenopus dorsal root ganglia explants. Nidogen is the target of MMPs released by cultured skin in matrigel, whereas other components remain intact. Our results suggest a novel link between MMP activity and extracellular matrix breakdown in the control of axonal growth.


Subject(s)
Axons/physiology , Matrix Metalloproteinases/metabolism , Neurogenesis/physiology , Skin/innervation , Animals , Blotting, Western , COS Cells , Chlorocebus aethiops , Coculture Techniques , Microscopy, Fluorescence , Polymerase Chain Reaction , RNA, Messenger/analysis , Xenopus
3.
J Biol Chem ; 286(47): 40443-51, 2011 Nov 25.
Article in English | MEDLINE | ID: mdl-21956108

ABSTRACT

Prodomains of A disintegrin and metalloproteinase (ADAM) metallopeptidases can act as highly specific intra- and intermolecular inhibitors of ADAM catalytic activity. The mouse ADAM9 prodomain (proA9; amino acids 24-204), expressed and characterized from Escherichia coli, is a competitive inhibitor of human ADAM9 catalytic/disintegrin domain with an overall inhibition constant of 280 ± 34 nM and high specificity toward ADAM9. In SY5Y neuroblastoma cells overexpressing amyloid precursor protein, proA9 treatment reduces the amount of endogenous ADAM10 enzyme in the medium while increasing membrane-bound ADAM10, as shown both by Western and activity assays with selective fluorescent peptide substrates using proteolytic activity matrix analysis. An increase in membrane-bound ADAM10 generates higher levels of soluble amyloid precursor protein α in the medium, whereas soluble amyloid precursor protein ß levels are decreased, demonstrating that inhibition of ADAM9 increases α-secretase activity on the cell membrane. Quantification of physiological ADAM10 substrates by a proteomic approach revealed that substrates, such as epidermal growth factor (EGF), HER2, osteoactivin, and CD40-ligand, are increased in the medium of BT474 breast tumor cells that were incubated with proA9, demonstrating that the regulation of ADAM10 by ADAM9 applies for many ADAM10 substrates. Taken together, our results demonstrate that ADAM10 activity is regulated by inhibition of ADAM9, and this regulation may be used to control shedding of amyloid precursor protein by enhancing α-secretase activity, a key regulatory step in the etiology of Alzheimer disease.


Subject(s)
ADAM Proteins/antagonists & inhibitors , ADAM Proteins/metabolism , Amyloid Precursor Protein Secretases/metabolism , Amyloid beta-Protein Precursor/metabolism , Cell Membrane/drug effects , Cell Membrane/enzymology , Membrane Proteins/antagonists & inhibitors , Membrane Proteins/metabolism , Peptide Fragments/pharmacology , ADAM Proteins/chemistry , ADAM10 Protein , Biocatalysis/drug effects , Cell Line, Tumor , Cell Membrane/metabolism , Humans , Membrane Proteins/chemistry , Protease Inhibitors/pharmacology , Protein Array Analysis , Protein Structure, Tertiary
4.
Curr Pharm Des ; 15(20): 2272-81, 2009.
Article in English | MEDLINE | ID: mdl-19601829

ABSTRACT

While it is highly accepted that ADAM family members with ubiquitous expression patterns, such as ADAM10 and ADAM17 have major roles in homoeostasis and pathology, ADAM8 was initially considered as an immune-specific ADAM with a cell-specific expression pattern. Therefore, ADAM8 had a "sleeping beauty" existence for many years, and has recently come back into focus as it was detected under several pathological conditions. These were found to typically involve inflammation and remodelling of the extracellular matrix, including cancers and serious respiratory diseases such as asthma. In these diseases, induced expression of ADAM8 by different stimuli results in cleavage of various substrates, including cell adhesion molecules, cytokine receptors, and ECM components. Involvement of ADAM8 in individual diseases indicates its usefulness as both a diagnostic and prognostic marker. Even more strikingly, as ADAM8 progressively emerges as a key effector in pathological processes, so does its attractiveness as a therapeutic target rather than being a mere indicator of disease and its progression. This is encouraged by analysis of ADAM8 null mice, identifying no adverse phenotype in the absence of functional ADAM8. Thus, ADAM8 potentially is an attractive drug target in a variety of diseases. In this review, the current knowledge on ADAM8 in diseases and avenues for specific inhibition based on unique biochemical features of ADAM8 will be presented.


Subject(s)
ADAM Proteins/drug effects , Inflammation/drug therapy , Membrane Proteins/drug effects , Animals , Humans , Inflammation/pathology , Mice
SELECTION OF CITATIONS
SEARCH DETAIL
...