Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Bioengineering (Basel) ; 11(4)2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38671738

ABSTRACT

The flow and heat transfer of a steady, viscous biomagnetic fluid containing magnetic particles caused by the swirling and stretching motion of a three-dimensional cylinder has been investigated numerically in this study. Because fluid and particle rotation are different, a magnetic field is applied in both radial and tangential directions to counteract the effects of rotational viscosity in the flow domain. Partial differential equations are used to represent the governing three-dimensional modeled equations. With the aid of customary similarity transformations, this system of partial differential equations is transformed into a set of ordinary differential equations. They are then numerically resolved utilizing a common finite differences technique that includes iterative processing and the manipulation of tridiagonal matrices. Graphs are used to depict the physical effects of imperative parameters on the swirling velocity, temperature distributions, skin friction coefficient, and the rate of heat transfer. For higher values of the ferromagnetic interaction parameter, it is discovered that the axial velocity increases, whereas temperature and tangential velocity drop. With rising levels of the ferromagnetic interaction parameter, the size of the axial skin friction coefficient and the rate of heat transfer are both accelerated. In some limited circumstances, a comparison with previously published work is also handled and found to be acceptably accurate.

2.
Math Biosci Eng ; 17(5): 4852-4874, 2020 07 13.
Article in English | MEDLINE | ID: mdl-33120531

ABSTRACT

Of concern in the paper is a theoretical investigation of boundary layer flow of a biomagnetic fluid and heat transfer on a stretching/shrinking sheet in the presence of a magnetic dipole. The problem has been treated mathematically by using Lie group transformation. The governing nonlinear partial differential equations are thereby reduced to a system of coupled nonlinear ordinary differential equations subject to associated boundary conditions. The resulting equations subject to boundary conditions are solved numerically by using bvp4c function available in MATLAB software. The plots for variations of velocity, temperature, skin friction and heat transfer rate have been drawn and adequate discussion has been made. The study reveals that the problem considered admits of dual solutions in particular ranges of values of the suction parameter and nonlinear stretching/shrinking parameter. A stability analysis has also been carried out and presented in the paper. This enables one to determine which solution is stable that can be realized physically, and which is not. The results of the present study have been compared with those reported by previous investigators to ascertain the validity/reliability of the computational results.


Subject(s)
Hot Temperature , Models, Theoretical , Reproducibility of Results , Temperature
3.
Proc Inst Mech Eng H ; 227(11): 1155-70, 2013 Nov.
Article in English | MEDLINE | ID: mdl-23901067

ABSTRACT

A numerical study is performed to investigate the magnetohydrodynamic viscous steady biofluid flow through a curved pipe with circular cross section under various conditions. A spectral method is applied as the principal tool for the numerical simulation with Fourier series, Chebyshev polynomials, collocation methods and an iteration method as secondary tools. The combined effects of Dean number, Dn , magnetic parameter, Mg , and tube curvature, δ, are studied. The flow patterns have been shown graphically for large Dean numbers as well as magnetic parameter and a wide range of curvatures, 0.01 ≤δ≤ 0.2. Two-vortex solutions have been found. Axial velocity has been found to increase with an increase of Dean number, whereas it is suppressed with greater curvature and magnetic parameters. For high magnetic parameter and Dean number and low curvature, almost all the fluid vortex strengths are weak. The study is relevant to magnetohydrodynamic blood flow in the cardiovascular system.


Subject(s)
Hydrodynamics , Magnetic Fields , Models, Theoretical , Computer Simulation , Fourier Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...