Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem C Nanomater Interfaces ; 128(21): 8637-8648, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38835933

ABSTRACT

Methylammonium lead tribromide perovskite (MAPbBr3) is an important material, for example, for light-emitting applications and tandem solar cells. The relevant photophysical properties are governed by a plethora of phenomena resulting from the complex and relatively poorly understood interplay of excitons and free charge carriers in the excited state. In this study, we combine transient spectroscopies in the visible and terahertz range to investigate the presence and evolution of excitons and free charge carriers at ultrafast times upon excitation at various photon energies and densities. For above- and resonant band-gap excitation, we find that free charges and excitons coexist and that both are mainly promptly generated within our 50-100 fs experimental time resolution. However, the exciton-to-free charge ratio increases upon decreasing the phonon energy toward resonant band gap excitation. The free charge signatures dominate the transient absorption response for above-band-gap excitation and low excitation densities, masking the excitonic features. With resonant band gap excitation and low excitation densities, we find that although the exciton density increases, free charges remain. We show evidence that the excitons localize into shallow trap and/or Urbach tail states to form localized excitons (within tens of picoseconds) that subsequently get detrapped. Using high excitation densities, we demonstrate that many-body interactions become pronounced and effects such as the Moss-Burstein shift, band gap renormalization, excitonic repulsion, and the formation of Mahan excitons are evident. The coexistence of excitons and free charges that we demonstrate here for photoexcited MAPbBr3 at ultrafast time scales confirms the high potential of the material for both light-emitting diode and tandem solar cell applications.

2.
Sci Rep ; 10(1): 22260, 2020 Dec 17.
Article in English | MEDLINE | ID: mdl-33335234

ABSTRACT

Wide band-gap perovskite solar cells have the potential for a relatively high output voltage and resilience in a degradation-inducing environment. Investigating the reasons why high voltages with adequate output power have not been realized yet is an underexplored part in perovskite research although it is of paramount interest for multijunction solar cells. One reason is interfacial carrier recombination that leads to reduced carrier lifetimes and voltage loss. To further improve the Voc of methylammonium lead tri-bromide (MAPbBr3), that has a band-gap of 2.3 eV, interface passivation technique is an important strategy. Here we demonstrate two ultrathin passivation layers consisting of PCBM and PMMA, that can effectively passivate defects at the TiO2/perovskite and perovskite/spiro-OMeTAD interfaces, respectively. In addition, perovskite crystallization was investigated with the established anti-solvent method and the novel flash infrared annealing (FIRA) with and without passivation layers. These modifications significantly suppress interfacial recombination providing a pathway for improved VOC's from 1.27 to 1.41 V using anti solvent and from 1.12 to 1.36 V using FIRA. Furthermore, we obtained more stable devices through passivation after 140 h where the device retained 70% of the initial performance value.

3.
ChemSusChem ; 13(1): 212-220, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-31592574

ABSTRACT

Two new metal-free organic sensitizers, L156 and L224, were designed, synthesized, and characterized for application in dye-sensitized solar cells (DSCs). The structures of the dyes contain a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-yl)benzoic acid as electron-rich and -deficient moieties, respectively. Two different π bridges, thiophene and 4,8-bis(4-hexylphenyl)benzo[1,2-b:4,5-b']dithiophene, were used for L156 and L224, respectively. The influence of iodide/triiodide, [Co(bpy)3 ]2+/3+ (bpy=2,2'-bipyridine), and [Cu(tmby)2 ]2+/+ (tmby=4,4',6,6'-tetramethyl-2,2'-bipyridine) complexes as redox electrolytes and 18 NR-T and 30 NR-D transparent TiO2 films on the DSC device performance was investigated. The L156-based DSC with [Cu(tmby)2 ]2+/+ complexes as the redox electrolyte resulted in the best performance of 9.26 % and a remarkably high open-circuit voltage value of 1.1 V (1.096 V), with a short-circuit current of 12.2 mA cm-2 and a fill factor of 0.692, by using 30 NR-D TiO2 films. An efficiency of up to 21.9 % was achieved under a 1000 lx indoor light source, which proved that dye L156 was also an excellent candidate for indoor applications. The maximal monochromatic incident-photon-to-current conversion efficiency of L156-30 NR-D reached up to 70 %.

4.
ChemSusChem ; 11(2): 494-502, 2018 01 23.
Article in English | MEDLINE | ID: mdl-29227038

ABSTRACT

A metal-free organic sensitizer, suitable for the application in dye-sensitized solar cells (DSSCs), has been designed, synthesized and characterized both experimentally and theoretically. The structure of the novel donor-acceptor-π-bridge-acceptor (D-A-π-A) dye incorporates a triphenylamine (TPA) segment and 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid (BTEBA). The triphenylamine unit is widely used as an electron donor for photosensitizers, owing to its nonplanar molecular configuration and excellent electron-donating capability, whereas 4-(benzo[c][1,2,5]thiadiazol-4-ylethynyl)benzoic acid is used as an electron acceptor unit. The influences of I3- /I- , [Co(bpy)3 ]3+/2+ and [Cu(tmby)2 ]2+/+ (tmby=4,4',6,6'-tetramethyl-2,2'-bipyridine) as redox electrolytes on the DSSC device performance were also investigated. The maximal monochromatic incident photon-to-current conversion efficiency (IPCE) reached 81 % and the solar light to electrical energy conversion efficiency of devices with [Cu(tmby)2 ]2+/+ reached 7.15 %. The devices with [Co(bpy)3 ]3+/2+ and I3- /I- electrolytes gave efficiencies of 5.22 % and 6.14 %, respectively. The lowest device performance with a [Co(bpy)3 ]3+/2+ -based electrolyte is attributed to increased charge recombination.


Subject(s)
Aniline Compounds/chemistry , Coloring Agents/chemistry , Electric Power Supplies , Solar Energy , Benzoic Acid/chemistry , Density Functional Theory , Electrochemical Techniques/instrumentation , Electrochemical Techniques/methods , Electrolytes/chemistry , Electrons , Oxidation-Reduction , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...