Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Res ; 252(Pt 4): 119081, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38714221

ABSTRACT

The development of polymeric-composites Agx%DP25-PET (x = 0,1,2,3) may significantly boost the potential application of Agx%DP25 (x = 0,1,2,3) photocatalytic powders. Producing large-scale nano-composites with hybrid-surfaces, that are also flexible materials and easy to employ in a variety of environments. A set of photocatalytic nan-composites embedded with the polymeric binder poly (acrylonitrile-co-butadiene)-dicarboxy terminated (C7H9N) were performed and evaluated for wastewater treatment applications. The results reveal that the flexible polymeric composites (Agx%DP25-PET, x = 0,1,2,3) have photocatalytic activity in aqua media to degrade methylene blue (MB) under visible-light. The addition of C7H9N to immobilize photocatalytic powders on the PET surface reduces photo-generated electron-hole recombination. The materials were characterized by HR-TEM, SEM/EDX, XRD, FT-IR, UV-Vis DRS and PL. The Agx%DP25-PET (x = 0,1,2,3) photocatalytic reactions exhibited productive discoloration/degradation rates, in both aerobic (AE) and anaerobic (AN) environments. The superior photodegradation of Ag2%DP25-PET was attributed to a combination of two effects: LSPR (localized surface plasmon resonance) and Ag-TiO2/environment affinities. The findings of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) provide significant insight into the photocatalytic requirements for MB discoloration/degradation. The experimental/theoretical analysis aimed to offer an in-depth understanding of medium/surface interactions on decorated TiO2 materials, as well as how these interactions affect overall degradation behavior.


Subject(s)
Methylene Blue , Nanocomposites , Silver , Wastewater , Water Pollutants, Chemical , Wastewater/chemistry , Methylene Blue/chemistry , Water Pollutants, Chemical/chemistry , Silver/chemistry , Nanocomposites/chemistry , Catalysis , Light , Waste Disposal, Fluid/methods , Water Purification/methods
2.
Environ Res ; 229: 115968, 2023 07 15.
Article in English | MEDLINE | ID: mdl-37121350

ABSTRACT

The molecular recognition (MRec) effect is required in the initial phase of organic reactions. The second stage involves molecular-orientations and molecular-orbitals energy-levels (MOrbE). The components of a reaction must be compatible in terms MRec and MOrbE. Therefore, the comprehension of photocatalytic systems applied in wastewater treatment will be improved if the MRec effect is also considered as an important factor. The purpose of this study is to provide a comprehensive understanding of the less studied anatase-brookite mixed-phase (doped and undoped). Anatase/brookite photocatalytic systems were evaluated utilizing experimental/theoretical approaches in H2O (aerobic/anaerobic) environments with Vis-light and the organic pollutant (OrPo) methyl orange (MO). The compatibility of MRec and MOrbE of anatase-brookite mixed-phase (with the different reactive system components) confirmed this is the optimal combination for photocatalytic application. Using the sol-gel method, AM-TiO2NP (amorphous), TiO2NP (crystalline), and TiO2NP-Co0.1 at% (crystalline Co-doped) anatase-brookite mixed-phase photocatalysts were obtained. The morphology and surface were characterized using XRD, BET, SEM, HR-TEM, FT-IR and XPS. Employing UV-vis DRS and PL, photo-response and electron-hole recombination were studied. LVS and Mott-Schottky plot were employed to determine photo-electrochemical activity. The results of TiO2NP photocatalytic degradation in both aerobic and anaerobic environments are remarkable. The results of molecular dynamics (MD) simulation and Fukui Function (FF) based on density functional theory (DFT) validate the remarkable photocatalytic MO degradation.


Subject(s)
Light , Spectroscopy, Fourier Transform Infrared , Anaerobiosis , Catalysis , X-Ray Diffraction
SELECTION OF CITATIONS
SEARCH DETAIL
...