Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 18 de 18
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2023 Nov 06.
Article in English | MEDLINE | ID: mdl-37933117

ABSTRACT

A key conundrum of biomolecular electronics is efficient electron transport (ETp) through solid-state junctions up to 10 nm, often without temperature activation. Such behavior challenges known charge transport mechanisms, especially via nonconjugated molecules such as proteins. Single-step, coherent quantum-mechanical tunneling proposed for ETp across small protein, 2-3 nm wide junctions, but it is problematic for larger proteins. Here we exploit the ability of bacteriorhodopsin (bR), a well-studied, 4-5 nm long membrane protein, to assemble into well-defined single and multiple bilayers, from ∼9 to 60 nm thick, to investigate ETp limits as a function of junction width. To ensure sufficient signal/noise, we use large area (∼10-3 cm2) Au-protein-Si junctions. Photoemission spectra indicate a wide energy separation between electrode Fermi and the nearest protein-energy levels, as expected for a polymer of mostly saturated components. Junction currents decreased exponentially with increasing junction width, with uniquely low length-decay constants (0.05-0.5 nm-1). Remarkably, even for the widest junctions, currents are nearly temperature-independent, completely so below 160 K. While, among other things, the lack of temperature-dependence excludes, hopping as a plausible mechanism, coherent quantum-mechanical tunneling over 60 nm is physically implausible. The results may be understood if ETp is limited by injection into one of the contacts, followed by more efficient charge propagation across the protein. Still, the electrostatics of the protein films further limit the number of charge carriers injected into the protein film. How electron transport across dozens of nanometers of protein layers is more efficient than injection defines a riddle, requiring further study.

2.
Nat Rev Chem ; 7(2): 106-122, 2023 Feb.
Article in English | MEDLINE | ID: mdl-37117915

ABSTRACT

The use of molecules bridged between two electrodes as a stable rectifier is an important goal in molecular electronics. Until recently, however, and despite extensive experimental and theoretical work, many aspects of our fundamental understanding and practical challenges have remained unresolved and prevented the realization of such devices. Recent advances in custom-designed molecular systems with rectification ratios exceeding 105 have now made these systems potentially competitive with existing silicon-based devices. Here, we provide an overview and critical analysis of recent progress in molecular rectification within single molecules, self-assembled monolayers, molecular multilayers, heterostructures, and metal-organic frameworks and coordination polymers. Examples of conceptually important and best-performing systems are discussed, alongside their rectification mechanisms. We present an outlook for the field, as well as prospects for the commercialization of molecular rectifiers.

3.
J Phys Chem Lett ; 14(12): 2973-2982, 2023 Mar 30.
Article in English | MEDLINE | ID: mdl-36940422

ABSTRACT

We demonstrate that the direction of current rectification via one of nature's most efficient light-harvesting systems, the photosystem 1 complex (PS1), can be controlled by its orientation on Au substrates. Molecular self-assembly of the PS1 complex using four different linkers with distinct functional head groups that interact by electrostatic and hydrogen bonds with different surface parts of the entire protein PS1 complex was used to tailor the PS1 orientation. We observe an orientation-dependent rectification in the current-voltage characteristics for linker/PS1 molecule junctions. Results of an earlier study using a surface two-site PS1 mutant complex having its orientation set by covalent binding to the Au substrate supports our conclusion. Current-voltage-temperature measurements on the linker/PS1 complex indicate off-resonant tunneling as the main electron transport mechanism. Our ultraviolet photoemission spectroscopy results highlight the importance of the protein orientation for the energy level alignment and provide insight into the charge transport mechanism via the PS1 transport chain.


Subject(s)
Photosystem I Protein Complex , Photosystem I Protein Complex/chemistry , Electron Transport
4.
J Phys Chem B ; 127(8): 1728-1734, 2023 03 02.
Article in English | MEDLINE | ID: mdl-36790863

ABSTRACT

The finding that electronic conductance across ultrathin protein films between metallic electrodes remains nearly constant from room temperature to just a few degrees Kelvin has posed a challenge. We show that a model based on a generalized Landauer formula explains the nearly constant conductance and predicts an Arrhenius-like dependence for low temperatures. A critical aspect of the model is that the relevant activation energy for conductance is either the difference between the HOMO and HOMO-1 or the LUMO+1 and LUMO energies instead of the HOMO-LUMO gap of the proteins. Analysis of experimental data confirms the Arrhenius-like law and allows us to extract the activation energies. We then calculate the energy differences with advanced DFT methods for proteins used in the experiments. Our main result is that the experimental and theoretical activation energies for these three different proteins and three differently prepared solid-state junctions match nearly perfectly, implying the mechanism's validity.

5.
Langmuir ; 39(4): 1394-1403, 2023 Jan 31.
Article in English | MEDLINE | ID: mdl-36648410

ABSTRACT

The electron transport (ETp) efficiency of solid-state protein-mediated junctions is highly influenced by the presence of electron-rich organic cofactors or transition metal ions. Hence, we chose to investigate an interesting cofactor-free non-redox protein, streptavidin (STV), which has unmatched strong binding affinity for an organic small-molecule ligand, biotin, which lacks any electron-rich features. We describe for the first time meso-scale ETp via electrical junctions of STV monolayers and focus on the question of whether the rate of ETp across both native and thiolated STV monolayers is influenced by ligand binding, a process that we show to cause some structural conformation changes in the STV monolayers. Au nanowire-electrode-protein monolayer-microelectrode junctions, fabricated by modifying an earlier procedure to improve the yields of usable junctions, were employed for ETp measurements. Our results on compactly integrated, dense, uniform, ∼3 nm thick STV monolayers indicate that, notwithstanding the slight structural changes in the STV monolayers upon biotin binding, there is no statistically significant conductance change between the free STV and that bound to biotin. The ETp temperature (T) dependence over the 80-300 K range is very small but with an unusual, slightly negative (metallic-like) dependence toward room temperature. Such dependence can be accounted for by the reversible structural shrinkage of the STV at temperatures below 160 K.

6.
Small ; 17(19): e2008218, 2021 05.
Article in English | MEDLINE | ID: mdl-33783130

ABSTRACT

A central issue in protein electronics is how far the structural stability of the protein is preserved under the very high electrical field that it will experience once a bias voltage is applied. This question is studied on the redox protein Azurin in the solid-state Au/protein/Au junction by monitoring protein vibrations during current transport under applied bias, up to ≈1 GV m-1 , by electrical detection of inelastic electron transport effects. Characteristic vibrational modes, such as CH stretching, amide (NH) bending, and AuS (of the bonds that connect the protein to an Au electrode), are not found to change noticeably up to 1.0 V. At >1.0 V, the NH bending and CH stretching inelastic features have disappeared, while the AuS features persist till ≈2 V, i.e., the proteins remain Au bound. Three possible causes for the disappearance of the NH and CH inelastic features at high bias, namely, i) resonance transport, ii) metallic filament formation, and iii) bond rupture leading to structural changes in the protein are proposed and tested. The results support the last option and indicate that spectrally resolved inelastic features can serve to monitor in operando structural stability of biological macromolecules while they serve as electronic current conduit.


Subject(s)
Azurin , Electrons , Azurin/metabolism , Electrodes , Electron Transport , Spectrum Analysis
7.
J Am Chem Soc ; 142(45): 19217-19225, 2020 11 11.
Article in English | MEDLINE | ID: mdl-33141577

ABSTRACT

We observe reversible, bias-induced switching of conductance via a blue copper protein azurin mutant, N42C Az, with a nearly 10-fold increase at |V| > 0.8 V than at lower bias. No such switching is found for wild-type azurin, WT Az, up to |1.2 V|, beyond which irreversible changes occur. The N42C Az mutant will, when positioned between electrodes in a solid-state Au-protein-Au junction, have an orientation opposite that of WT Az with respect to the electrodes. Current(s) via both proteins are temperature-independent, consistent with quantum mechanical tunneling as dominant transport mechanism. No noticeable difference is resolved between the two proteins in conductance and inelastic electron tunneling spectra at <|0.5 V| bias voltages. Switching behavior persists from 15 K up to room temperature. The conductance peak is consistent with the system switching in and out of resonance with the changing bias. With further input from UV photoemission measurements on Au-protein systems, these striking differences in conductance are rationalized by having the location of the Cu(II) coordination sphere in the N42C Az mutant, proximal to the (larger) substrate-electrode, to which the protein is chemically bound, while for the WT Az that coordination sphere is closest to the other Au electrode, with which only physical contact is made. Our results establish the key roles that a protein's orientation and binding nature to the electrodes play in determining the electron transport tunnel barrier.


Subject(s)
Azurin/metabolism , Azurin/chemistry , Azurin/genetics , Copper/chemistry , Electrodes , Electron Transport , Gold/chemistry , Gold/metabolism , Mutagenesis , Photoelectron Spectroscopy , Protein Binding , Quantum Theory , Temperature
8.
Phys Chem Chem Phys ; 22(37): 21547-21549, 2020 Sep 30.
Article in English | MEDLINE | ID: mdl-32926017

ABSTRACT

Our paper [Phys. Chem. Chem. Phys., 2019, 21, 16762] is the subject of a comment that clarifies a flaw in analysis of STM data. We accept the comment in regard to the aspect ratio considerations, but we also further clarify the main conclusions of our paper, and provide a molecular scale schematic using the data presented in the comment to help refine the original conclusions. Taken together, this shows that models presented in the literature may benefit from including more fine structure details, as better understanding may emerge from such considerations. This was the intent of our original article, and we thank the comment authors for the chance to clarify these points.

9.
iScience ; 23(5): 101099, 2020 May 22.
Article in English | MEDLINE | ID: mdl-32438319

ABSTRACT

Successful integration of proteins in solid-state electronics requires contacting them in a non-invasive fashion, with a solid conducting surface for immobilization as one such contact. The contacts can affect and even dominate the measured electronic transport. Often substrates, substrate treatments, protein immobilization, and device geometries differ between laboratories. Thus the question arises how far results from different laboratories and platforms are comparable and how to distinguish genuine protein electronic transport properties from platform-induced ones. We report a systematic comparison of electronic transport measurements between different laboratories, using all commonly used large-area schemes to contact a set of three proteins of largely different types. Altogether we study eight different combinations of molecular junction configurations, designed so that Ageoof junctions varies from 105 to 10-3 µm2. Although for the same protein, measured with similar device geometry, results compare reasonably well, there are significant differences in current densities (an intensive variable) between different device geometries. Likely, these originate in the critical contact-protein coupling (∼contact resistance), in addition to the actual number of proteins involved, because the effective junction contact area depends on the nanometric roughness of the electrodes and at times, even the proteins may increase this roughness. On the positive side, our results show that understanding what controls the coupling can make the coupling a design knob. In terms of extensive variables, such as temperature, our comparison unanimously shows the transport to be independent of temperature for all studied configurations and proteins. Our study places coupling and lack of temperature activation as key aspects to be considered in both modeling and practice of protein electronic transport experiments.

10.
J Phys Chem Lett ; 11(1): 144-151, 2020 Jan 02.
Article in English | MEDLINE | ID: mdl-31821001

ABSTRACT

Solid-state electronic transport (ETp) via the electron-transfer copper protein azurin (Az) was measured in Au/Az/Au junction configurations down to 4 K, the lowest temperature for solid-state protein-based junctions. Not only does lowering the temperature help when observing fine features of electronic transport, but it also limits possible electron transport mechanisms. Practically, wire-bonded devices-on-chip, carrying Az-based microscopic junctions, were measured in liquid He, minimizing temperature gradients across the samples. Much smaller junctions, in conducting-probe atomic force microscopy measurements, served, between room temperature and the protein's denaturation temperature (∼323 K), to check that conductance behavior is independent of device configuration or contact nature and thus is a property of the protein itself. Temperature-independent currents were observed from ∼320 to 4 K. The experimental results were fitted to a single-level Landauer model to extract effective energy barrier and electrode-molecule coupling strength values and to compare data sets. Our results strongly support that quantum tunneling, rather than hopping, dominates ETp via Az.

11.
Phys Chem Chem Phys ; 21(30): 16762-16770, 2019 Aug 14.
Article in English | MEDLINE | ID: mdl-31328202

ABSTRACT

This paper shows that molecular layers grown using diazonium chemistry on carbon surfaces have properties indicative of the presence of a variety of structural motifs. Molecular layers grown with aromatic monomers with thickness between 1 and ∼15 nm display optical absorption spectra with significant broadening but no change in band gap or onsets of absorption as a function of layer thickness. This suggests that there is no extended conjugation in these layers, contrary to the conclusions of previous work. Density-functional theory modelling of the non-conjugated versions of the constituent aromatic monomers reveals that the experimental trends in optical spectra can be recovered, thereby establishing limits to the degree of conjugation and the nature of the order of as-grown molecular layers. We conclude that the absence of both shifts in band gap and changes in absorption onset is a consequence of resonant conjugation within the layers being less than 1.5 monomer units, and that film disorder is the main origin of the optical spectra. These findings have important implications for understanding charge transport mechanisms in molecular junction devices, as the layers cannot be expected to behave as ideal, resonantly conjugated films, but should be viewed as a collection of mixed nonresonantly- and resonantly-conjugated monomers.

12.
Angew Chem Int Ed Engl ; 58(34): 11852-11859, 2019 08 19.
Article in English | MEDLINE | ID: mdl-31246354

ABSTRACT

A sample-type protein monolayer, that can be a stepping stone to practical devices, can behave as an electrically driven switch. This feat is achieved using a redox protein, cytochrome C (CytC), with its heme shielded from direct contact with the solid-state electrodes. Ab initio DFT calculations, carried out on the CytC-Au structure, show that the coupling of the heme, the origin of the protein frontier orbitals, to the electrodes is sufficiently weak to prevent Fermi level pinning. Thus, external bias can bring these orbitals in and out of resonance with the electrode. Using a cytochrome C mutant for direct S-Au bonding, approximately 80 % of the Au-CytC-Au junctions show at greater than 0.5 V bias a clear conductance peak, consistent with resonant tunneling. The on-off change persists up to room temperature, demonstrating reversible, bias-controlled switching of a protein ensemble, which, with its built-in redundancy, provides a realistic path to protein-based bioelectronics.


Subject(s)
Cytochromes c/chemistry , Cytochromes c/metabolism , Electric Conductivity , Electrodes , Heme/chemistry , Iron/chemistry , Electrochemistry , Electron Transport , Humans , Oxidation-Reduction , Protein Conformation
13.
Nanoscale ; 10(46): 21712-21720, 2018 Nov 29.
Article in English | MEDLINE | ID: mdl-30431054

ABSTRACT

The incorporation of proteins as functional components in electronic junctions has received much interest recently due to their diverse bio-chemical and physical properties. However, information regarding the energies of the frontier orbitals involved in their electron transport (ETp) has remained elusive. Here we employ a new method to quantitatively determine the energy position of the molecular orbital, nearest to the Fermi level (EF) of the electrode, in the electron transfer protein Azurin. The importance of the Cu(ii) redox center of Azurin is demonstrated by measuring gate-controlled conductance switching which is absent if Azurin's copper ions are removed. Comparing different electrode materials, a higher conductance and a lower gate-induced current onset is observed for the material with smaller work function, indicating that ETp via Azurin is LUMO-mediated. We use the difference in work function to calibrate the difference in gate-induced current onset for the two electrode materials, to a specific energy level shift and find that ETp via Azurin is near resonance. Our results provide a basis for mapping and studying the role of energy level positions in (bio)molecular junctions.


Subject(s)
Azurin/chemistry , Transistors, Electronic , Copper/chemistry , Electrodes , Electron Transport , Gold/chemistry , Oxidation-Reduction , Quantum Theory
14.
J Am Chem Soc ; 140(41): 13317-13326, 2018 10 17.
Article in English | MEDLINE | ID: mdl-30235415

ABSTRACT

Making biomolecular electronics a reality will require control over charge transport across biomolecules. Here we show that chemical modulation of the coupling between one of the electronic contacts and the biomolecules in a solid-state junction allows controlling electron transport (ETp) across the junction. Employing the protein azurin (Az), we achieve such modulation as follows: Az is covalently bound by Au-S bonding to a lithographically prepared Au electrode (Au-Az). Au nanowires (AuNW) onto which linker molecules, with free carboxylic group, are bound via Au-S bonds serve as top electrode. Current-voltage plots of AuNW-linkerCOOH//Az-Au junctions have been shown earlier to exhibit step-like features, due to resonant tunneling through discrete Az energy levels. Forming an amide bond between the free carboxylic group of the AuNW-bound linker and Az yields AuNW-linkerCO-NH-Az-Au junctions. This Az-linker bond switches the ETp mechanism from resonant to off-resonant tunneling. By varying the extent of this amide bonding, the current-voltage dependence can be controlled between these two mechanisms, thus providing a platform for altering and controlling the ETp mechanism purely by chemical modification in a two-terminal device, i.e., without a gate electrode. Using results from conductance, including the energy barrier and electrode-molecule coupling parameters extracted from current-voltage fitting and normalized differential conductance analysis and from inelastic-electron-tunneling and photoelectron spectroscopies, we determine the Az frontier orbital energies, with respect to the Au Fermi level, for four junction configurations, differing only in electrode-protein coupling. Our approach and findings open the way to both qualitative and quantitative control of biomolecular electronic junctions.

15.
Proc Natl Acad Sci U S A ; 115(20): E4577-E4583, 2018 05 15.
Article in English | MEDLINE | ID: mdl-29712853

ABSTRACT

Metalloproteins, proteins containing a transition metal ion cofactor, are electron transfer agents that perform key functions in cells. Inspired by this fact, electron transport across these proteins has been widely studied in solid-state settings, triggering the interest in examining potential use of proteins as building blocks in bioelectronic devices. Here, we report results of low-temperature (10 K) electron transport measurements via monolayer junctions based on the blue copper protein azurin (Az), which strongly suggest quantum tunneling of electrons as the dominant charge transport mechanism. Specifically, we show that, weakening the protein-electrode coupling by introducing a spacer, one can switch the electron transport from off-resonant to resonant tunneling. This is a consequence of reducing the electrode's perturbation of the Cu(II)-localized electronic state, a pattern that has not been observed before in protein-based junctions. Moreover, we identify vibronic features of the Cu(II) coordination sphere in transport characteristics that show directly the active role of the metal ion in resonance tunneling. Our results illustrate how quantum mechanical effects may dominate electron transport via protein-based junctions.


Subject(s)
Copper/chemistry , Electrons , Metalloproteins/chemistry , Models, Theoretical , Electron Transport , Humans , Temperature
16.
J Am Chem Soc ; 137(3): 1296-304, 2015 Jan 28.
Article in English | MEDLINE | ID: mdl-25562564

ABSTRACT

The photocurrent spectra for large-area molecular junctions are reported, where partially transparent copper top contacts permit illumination by UV-vis light. The effect of variation of the molecular structure and thickness are discussed. Internal photoemission (IPE), a process involving optical excitation of hot carriers in the contacts followed by transport across internal system barriers, is dominant when the molecular component does not absorb light. The IPE spectrum contains information regarding energy level alignment within a complete, working molecular junction, with the photocurrent sign indicating transport through either the occupied or unoccupied molecular orbitals. At photon energies where the molecular layer absorbs, a secondary phenomenon is operative in addition to IPE. In order to distinguish IPE from this secondary mechanism, we show the effect of the source intensity as well as the thickness of the molecular layer on the observed photocurrent. Our results clearly show that the IPE mechanism can be differentiated from the secondary mechanism by the effects of variation of experimental parameters. We conclude that IPE can provide valuable information regarding interfacial energetics in intact, working molecular junctions, including clear discrimination of charge transport mediated by electrons through unoccupied system orbitals from that mediated by hole transport through occupied system orbitals.

17.
J Am Chem Soc ; 135(26): 9584-7, 2013 Jul 03.
Article in English | MEDLINE | ID: mdl-23782345

ABSTRACT

Molecular electronics seeks to build circuitry using organic components with at least one dimension in the nanoscale domain. Progress in the field has been inhibited by the difficulty in determining the energy levels of molecules after being perturbed by interactions with the conducting contacts. We measured the photocurrent spectra for large-area aliphatic and aromatic molecular tunnel junctions with partially transparent copper top contacts. Where no molecular absorption takes place, the photocurrent is dominated by internal photoemission, which exhibits energy thresholds corresponding to interfacial transport barriers, enabling their direct measurement in a functioning junction.

18.
Proc Natl Acad Sci U S A ; 109(29): 11498-503, 2012 Jul 17.
Article in English | MEDLINE | ID: mdl-22660930

ABSTRACT

Molecular junctions are essentially modified electrodes familiar to electrochemists where the electrolyte is replaced by a conducting "contact." It is generally hypothesized that changing molecular structure will alter system energy levels leading to a change in the transport barrier. Here, we show the conductance of seven different aromatic molecules covalently bonded to carbon implies a modest range (< 0.5 eV) in the observed transport barrier despite widely different free molecule HOMO energies (> 2 eV range). These results are explained by considering the effect of bonding the molecule to the substrate. Upon bonding, electronic inductive effects modulate the energy levels of the system resulting in compression of the tunneling barrier. Modification of the molecule with donating or withdrawing groups modulate the molecular orbital energies and the contact energy level resulting in a leveling effect that compresses the tunneling barrier into a range much smaller than expected. Whereas the value of the tunneling barrier can be varied by using a different class of molecules (alkanes), using only aromatic structures results in a similar equilibrium value for the tunnel barrier for different structures resulting from partial charge transfer between the molecular layer and the substrate. Thus, the system does not obey the Schottky-Mott limit, and the interaction between the molecular layer and the substrate acts to influence the energy level alignment. These results indicate that the entire system must be considered to determine the impact of a variety of electronic factors that act to determine the tunnel barrier.


Subject(s)
Carbon/chemistry , Electrochemical Techniques/methods , Hydrocarbons, Aromatic/chemistry , Models, Chemical , Electric Conductivity , Electrodes , Photoelectron Spectroscopy
SELECTION OF CITATIONS
SEARCH DETAIL
...