Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
J Chem Phys ; 160(21)2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38828828

ABSTRACT

Drachmann's regularization approach is implemented for floating explicitly correlated Gaussians (fECGs) and molecular systems. Earlier applications of drachmannized relativistic corrections for molecular systems were hindered due to the unknown analytic matrix elements of 1/rix1/rjy-type operators with fECGs. In the present work, one of the 1/r factors is approximated by a linear combination of Gaussians, which results in calculable integrals. The numerical approach is found to be precise and robust over a range of molecular systems and nuclear configurations, and thus, it opens the route toward an automated evaluation of high-precision relativistic corrections over potential energy surfaces of polyatomic systems. Furthermore, the newly developed integration approach makes it possible to construct the matrix representation of the square of the electronic Hamiltonian relevant for energy lower-bound as well as time-dependent computations of molecular systems with a flexible and high-precision fECG basis representation.

2.
ACS Phys Chem Au ; 3(3): 222-240, 2023 May 24.
Article in English | MEDLINE | ID: mdl-37249939

ABSTRACT

Interactions in atomic and molecular systems are dominated by electromagnetic forces and the theoretical framework must be in the quantum regime. The physical theory for the combination of quantum mechanics and electromagnetism, quantum electrodynamics has been "established" by the mid-twentieth century, primarily as a scattering theory. To describe atoms and molecules, it is important to consider bound states. In the nonrelativistic quantum mechanics framework, bound states can be efficiently computed using robust and general methodologies with systematic approximations developed for solving wave equations. With the sight of the development of a computational quantum electrodynamics framework for atomic and molecular matter, the field theoretic Bethe-Salpeter wave equation expressed in space-time coordinates, its exact equal-time variant, and emergence of a relativistic wave equation, is reviewed. A computational framework, with initial applications and future challenges in relation with precision spectroscopy, is also highlighted.

3.
J Phys Chem A ; 127(3): 627-633, 2023 Jan 26.
Article in English | MEDLINE | ID: mdl-36626594

ABSTRACT

A general computational scheme for the (nonrelativistic) Bethe logarithm is developed, opening the route to "routine" evaluation of the leading-order quantum electrodynamics correction (QED) relevant for spectroscopic applications for small polyatomic and polyelectronic molecular systems. The implementation relies on the Schwartz method and minimization of a Hylleraas functional. In relation with electronically excited states, a projection technique is considered, which ensures positive definiteness of the functional over the entire parameter (photon momentum) range. Using this implementation, the Bethe logarithm is converged to a relative precision better than 1:103 for selected electronic states of the two-electron H2 and H3+, and the three-electron He2+ and H+H2 molecular systems. The present work focuses on nuclear configurations near the local minimum of the potential energy surface, but the computations can be repeated also for other structures.

4.
J Chem Phys ; 157(9): 094113, 2022 Sep 07.
Article in English | MEDLINE | ID: mdl-36075719

ABSTRACT

Variational and perturbative relativistic energies are computed and compared for two-electron atoms and molecules with low nuclear charge numbers. In general, good agreement of the two approaches is observed. Remaining deviations can be attributed to higher-order relativistic, also called non-radiative quantum electrodynamics (QED), corrections of the perturbative approach that are automatically included in the variational solution of the no-pair Dirac-Coulomb-Breit (DCB) equation to all orders of the α fine-structure constant. The analysis of the polynomial α dependence of the DCB energy makes it possible to determine the leading-order relativistic correction to the non-relativistic energy to high precision without regularization. Contributions from the Breit-Pauli Hamiltonian, for which expectation values converge slowly due the singular terms, are implicitly included in the variational procedure. The α dependence of the no-pair DCB energy shows that the higher-order (α4Eh) non-radiative QED correction is 5% of the leading-order (α3Eh) non-radiative QED correction for Z = 2 (He), but it is 40% already for Z = 4 (Be2+), which indicates that resummation provided by the variational procedure is important already for intermediate nuclear charge numbers.

5.
J Chem Phys ; 156(8): 084110, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232200

ABSTRACT

The Breit interaction is implemented in the no-pair variational Dirac-Coulomb (DC) framework using an explicitly correlated Gaussian basis reported in the previous paper [P. Jeszenszki, D. Ferenc, and E. Mátyus, J. Chem. Phys. 156, 084111 (2022)]. Both a perturbative and a fully variational inclusion of the Breit term are considered. The no-pair DC plus perturbative Breit and the no-pair DC-Breit energies are compared with perturbation theory results including the Breit-Pauli Hamiltonian and leading-order non-radiative quantum electrodynamics corrections for low Z values. Possible reasons for the observed deviations are discussed.

6.
J Chem Phys ; 156(8): 084111, 2022 Feb 28.
Article in English | MEDLINE | ID: mdl-35232203

ABSTRACT

The Dirac-Coulomb equation with positive-energy projection is solved using explicitly correlated Gaussian functions. The algorithm and computational procedure aims for a parts-per-billion convergence of the energy to provide a starting point for further comparison and further developments in relation with high-resolution atomic and molecular spectroscopy. Besides a detailed discussion of the implementation of the fundamental spinor structure, permutation, and point-group symmetries, various options for the positive-energy projection procedure are presented. The no-pair Dirac-Coulomb energy converged to a parts-per-billion precision is compared with perturbative results for atomic and molecular systems with small nuclear charge numbers. Paper II [D. Ferenc, P. Jeszenszki, and E. Mátyus, J. Chem. Phys. 156, 084110 (2022).] describes the implementation of the Breit interaction in this framework.

7.
J Chem Theory Comput ; 17(11): 7187-7194, 2021 Nov 09.
Article in English | MEDLINE | ID: mdl-34648287

ABSTRACT

The quantum harmonic model and the two-phase thermodynamic method (2PT) are widely used to obtain quantum-corrected properties such as isobaric heat capacities or molar entropies. 2PT heat capacities were calculated inconsistently in the literature. For water, the classical heat capacity was also considered, but for organic liquids, it was omitted. We reanalyzed the performance of different quantum corrections on the heat capacities of common organic solvents against experimental data. We have pointed out serious flaws in previous 2PT studies. The vibrational density of states was calculated incorrectly causing a 39% relative error in diffusion coefficients and 45% error in the 2PT heat capacities. The wrong conversion of isobaric and isochoric heat capacities also caused about 40% error but in the other direction. We have introduced the concept of anharmonic correction (AC), which is simply the deviation of the classical heat capacity from that of the harmonic oscillator model. This anharmonic contribution is around +30 to 40 J/(mol K) for water depending on the water model and -8 to -10 J/(mol K) for hydrocarbons and halocarbons. AC is unrealistically large, +40 J/(K mol) for alcohols and amines, indicating some deficiency of the OPLS force field. The accuracy of the computations was also assessed with the determination of the self-diffusion coefficients.

8.
J Chem Phys ; 154(22): 224110, 2021 Jun 14.
Article in English | MEDLINE | ID: mdl-34241227

ABSTRACT

A variational solution procedure is reported for the many-particle no-pair Dirac-Coulomb and Dirac-Coulomb-Breit Hamiltonians aiming at a parts-per-billion (ppb) convergence of the atomic and molecular energies, described within the fixed nuclei approximation. The procedure is tested for nuclear charge numbers from Z = 1 (hydrogen) to 28 (iron). Already for the lowest Z values, a significant difference is observed from leading-order Foldy-Woythusen perturbation theory, but the observed deviations are smaller than the estimated self-energy and vacuum polarization corrections.

9.
Phys Rev Lett ; 125(21): 213001, 2020 Nov 20.
Article in English | MEDLINE | ID: mdl-33274993

ABSTRACT

The rovibrational intervals of the ^{4}He_{2}^{+} molecular ion in its X ^{2}Σ_{u}^{+} ground electronic state are computed by including the nonadiabatic, relativistic, and leading-order quantum-electrodynamics corrections. Good agreement of theory and experiment is observed for the rotational excitation series of the vibrational ground state and the fundamental vibration. The lowest-energy rotational interval is computed to be 70.937 69(10) cm^{-1} in agreement with the most recently reported experimental value, 70.937 589(23)(60)_{sys} cm^{-1} [L. Semeria et al., Phys. Rev. Lett. 124, 213001 (2020)PRLTAO0031-900710.1103/PhysRevLett.124.213001].

10.
J Chem Theory Comput ; 16(5): 3316-3334, 2020 May 12.
Article in English | MEDLINE | ID: mdl-32268067

ABSTRACT

Nuclear quantum effects have significant contributions to thermodynamic quantities and structural properties; furthermore, very expensive methods are necessary for their accurate computation. In most calculations, these effects, for instance, zero-point energies, are simply neglected or only taken into account within the quantum harmonic oscillator approximation. Herein, we present a new method, Generalized Smoothed Trajectory Analysis, to determine nuclear quantum effects from molecular dynamics simulations. The broad applicability is demonstrated with the examples of a harmonic oscillator and different states of water. Ab initio molecular dynamics simulations have been performed for ideal gas up to the temperature of 5000 K. Classical molecular dynamics have been carried out for hexagonal ice, liquid water, and vapor at atmospheric pressure. With respect to the experimental heat capacity, our method outperforms previous calculations in the literature in a wide temperature range at lower computational cost than other alternatives. Dynamic and structural nuclear quantum effects of water are also discussed.

11.
J Chem Phys ; 151(9): 094101, 2019 Sep 07.
Article in English | MEDLINE | ID: mdl-31492075

ABSTRACT

The mass-correction function is evaluated for selected excited states of the hydrogen molecule within a single-state nonadiabatic treatment. Its qualitative features are studied at the avoided crossing of the EF with the GK state and also for the outer well of the HH¯ state. For the HH¯ state, a negative mass correction is obtained for the vibrational motion near the outer minimum, which accounts for most of the deviation between experiment and earlier theoretical work.

SELECTION OF CITATIONS
SEARCH DETAIL
...