Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Nanotechnology ; 32(42)2021 Jul 26.
Article in English | MEDLINE | ID: mdl-34252897

ABSTRACT

Carbon black (CB) supported palladium-platinum catalysts were prepared with and without nickel(II) oxide or iron(III) oxide promoter materials. By applying ultrasonic cavitation highly efficient CB supported catalysts were created. The designed catalyst preparation is a one-step procedure, as post-treatments (e.g. calcination, hydrogen activation) are not necessary. The activation of the catalysts occurs during their preparation due to the ultrasonic cavitation. Thus, a fast and simple catalyst preparation procedure have been developed. The activity of the catalysts was compared in nitrobenzene hydrogenation at different temperatures in the range of 283-323 K at 20 bar hydrogen pressure. In terms of selectivity and aniline yield, no significant differences were detected even when promoters were present. By using the NiO promoter, the activation energy was extremely low (7.6 ± 0.7 kJ mol-1). The selectivity was over 99% in every case, and 99.6% aniline yield was achieved without any promoters (99.7% with NiO), while less than 1.0% by-products were formed. The reaction rate was high with every catalyst, and no significant differences were detected. All in all, the prepared catalysts show excellent catalytic activity in the hydrogenation of nitrobenzene.

2.
Int J Mol Sci ; 22(11)2021 May 31.
Article in English | MEDLINE | ID: mdl-34073013

ABSTRACT

The catalytic hydrogenation of 2,4-dinitrotoluene (DNT) to 2,4-toluenediamine (TDA) is a key step in the production of polyurethanes; therefore, the development of efficient hydrogenation catalysts for industrial use is of paramount importance. In the present study, chromium(IV) oxide nanowires were decorated by palladium and platinum nanoparticles in a one-step, simple, and fast preparation method to yield highly efficient hydrogenation catalysts for immediate use. The nanoparticles were deposited onto the surface of CrO2 nanowires by using ultrasonic cavitation and ethanol as a reduction agent. Beneficially, the catalyst became catalytically active right at the end of the preparation and no further treatment was necessary. The activity of the Pd- and Pt-decorated CrO2 catalysts were compared in the hydrogenation of 2,4-dinitrotoluene (DNT). Both catalysts have shown high activity in the hydrogenation tests. The DNT conversion exceeded 98% in both cases, whereas the 2,4-toluenediamine (TDA) yields were 99.7 n/n% and 98.8 n/n%, with the Pd/CrO2 and Pt/CrO2, respectively, at 333 K and 20 bar H2 pressure. In the case of the Pt/CrO2 catalyst, 304.08 mol of TDA formed with 1 mol Pt after 1 h hydrogenation. Activation energies were also calculated to be approximately 24 kJ∙mol-1. Besides their immediate applicability, our catalysts were well dispersible in the reaction medium (methanolic solution of DNT). Moreover, because of their magnetic behavior, the catalysts were easy to handle and remove from the reaction media by using a magnetic field.


Subject(s)
Chromium Compounds/chemistry , Metal Nanoparticles/chemistry , Nanowires/chemistry , Palladium/chemistry , Platinum/chemistry , Catalysis
3.
Sci Rep ; 10(1): 17270, 2020 10 14.
Article in English | MEDLINE | ID: mdl-33057126

ABSTRACT

Carbon nanosheets (CNs) were successfully synthesized from nettle stem (NS) which is an inexpensive material with a high carbon content that is abundantly available in nature. CNs were produced using chemical (potassium hydroxide activation and acid exfoliation) and thermal treatments. Sulfuric (H2SO4), phosphoric (H3PO4) and nitric (HNO3) acid solutions were used for exfoliation. CNs exfoliated by H3PO4 have higher specific surface area (789 m2 g-1) compared to CNs exfoliated by H2SO4 (705 m2 g-1) and HNO3 (106 m2 g-1). In this work, NSCNs were found to be a potential candidate for electrode material in electrochemical capacitors. The maximum specific capacitance of the NSCNs exfoliated by H3PO4 is found to be 27.3 F g-1 at a current density of 0.05 A g-1, while the specific capacitance of NSCNs exfoliated by H2SO4 and HNO3 is 9.34 F g-1 and 1.71 F g-1, respectively. Energy density (0.06-0.95 Wh kg-1) and power density (20.9-26.7 W kg-1) of NSCNs are confirmed to be supercapacitor materials and can be applied in energy storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...