Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Language
Publication year range
1.
Anim Reprod ; 21(3): e20240069, 2024.
Article in English | MEDLINE | ID: mdl-39175997

ABSTRACT

With the development of in vitro technologies, embryos can be produced using oocytes retrieved directly from the ovaries, i.e., regardless of ovulation. This has allowed the use of different animal categories as oocyte donors, including prepubertal cattle. The advantages of using this strategy to shorten the generation interval and accelerate genetic gain over time were soon recognized, and the first offspring generated using oocytes collected from calves were born in the early 1990s. Nevertheless, embryo production from calves and prepubertal heifers remains a challenge. The oocytes collected before puberty present low in vitro developmental potential, and the subsequent blastocyst rates are consistently lower than those from pubertal females. The acquisition of developmental competence by the oocytes occurs progressively throughout the prepubertal period, which can be subdivided into an early, intermediate, and late prepubertal (or peripubertal) phases, each characterized by different physiological and endocrine features. Therefore, embryo yield increases with age but will only achieve its maximum after puberty. The most common strategy to improve oocyte developmental potential before puberty is the use of gonadotrophic stimulation prior to oocyte retrieval. The results with superstimulation, however, vary among studies, depending on the source, dose, and length of FSH treatment, as well as the age and breed of the donors. The use of calves and prepubertal heifers as oocyte donors should also consider the possible impacts of the oocyte retrieval technique (LOPU or OPU) and the use of exogenous hormones on their subsequent fertility and productive life.

2.
J Appl Genet ; 65(3): 591-600, 2024 Sep.
Article in English | MEDLINE | ID: mdl-38570427

ABSTRACT

Count traits are usually explored in livestock breeding programs, and they usually do not fit into normal distribution, requiring alternatives to adjust the phenotype to estimate accurate genetic parameters and breeding values. Alternatively, distribution such as Poisson can be used to evaluate count traits. This study aimed to compare and discuss the genetic evaluation for oocyte and embryo counts considering Gaussian (untransformed variable - LIN; transformed by logarithm - LOG; transformed by Anscombe - ANS) and Poisson (POI) distributions. The data comprised 11,343 total oocytes (TO), viable oocytes (VO), cleaved embryos (CE), and viable embryo (VE) records of ovum pick-up from 1740 Dairy Gir heifers and cows. The genetic parameters and breeding values were estimated by the MCMCglmm package of the R software. The posterior means of heritability varied from 0.40 (LIN) to 0.49 (POI) for TO, 0.39 (LIN) to 0.49 (POI) for VO, 0.30 (LOG) to 0.41 (POI) for cleaved embryos, and 0.19 (LIN) to 0.32 (POI) for viable embryos. The posterior means of repeatability varied from 0.56 (LIN) to 0.65 (POI) for TO, 0.53 (LOG) to 0.63 (POI) for VO, 0.44 (LOG) to 0.60 (POI) for CE, and 0.36 (LOG) to 0.56 (POI) for VE. Deviance information criterion and mean squared residuals indicated that POI model should be used for the genetic evaluation of embryo and oocyte count traits. Spearman's rank correlation between estimated breeding value (EBV) for embryo and oocyte count traits computed by POI, LOG, and ANS models was high (ranging from 0.77 to 0.99), indicating little reranking among the best animals. The POI model is the most adequate for genetic evaluation, resulting in more reliable EBV of oocyte and embryo count traits for Dairy Gir cattle.


Subject(s)
Bayes Theorem , Breeding , Models, Genetic , Oocytes , Animals , Cattle/genetics , Oocytes/growth & development , Female , Phenotype , Embryo, Mammalian , Poisson Distribution
3.
Trop Anim Health Prod ; 56(1): 7, 2023 Dec 08.
Article in English | MEDLINE | ID: mdl-38063913

ABSTRACT

Identifying and selecting genotypes tolerant to heat stress might improve reproductive traits in dairy cattle, including oocyte and embryo production. The temperature-humidity index (THI) was used, via random regression models, to investigate the impact of heat stress on genetic parameters and breeding values of oocyte and embryo production in Gir dairy cattle. We evaluated records of total oocytes (TO), viable oocytes (VO), cleaved embryos (CE), and viable embryos (VE) from dairy Gir donors. Twenty-four models were tested, considering age at ovum pick-up (AOPU) and THI means as a regressor in the genetic evaluation. We computed THI in eight periods, from 0 to 112 days before ovum pick-up, which were adjusted by different orders of Legendre polynomials (second, third, and fourth). The best-fit model according to Akaike's information criterion (AIC) and Model Posterior Probabilities (MPP) considered Legendre polynomials of third order and THI means of 112 days for TO, fourth order and 56 days for VO, second order and 28 days for CE, and second order and 42 days for VE, respectively. The heritability (h2) estimates across AOPU and THI scales ranged from 0.34 to 0.62 for TO, 0.31 to 0.58 for VO, 0.26 to 0.39 for CE, and 0.15 to 0.26 for VE, respectively. The fraction of the phenotypic variance explained by the permanent environment in different AOPU and THI scales ranged from 0.03 to 0.25 for TO, 0.05 to 0.26 for VO, 0.09 to 0.36 for CE, and 0.15 to 0.27 for VE, respectively. Spearman's rank correlation between the estimated breeding values in different AOPU and THI scale from the top 5% sires and females ranged from 0.18 to 0.90 for TO, 0.31 to 0.95 for VO, 0.14 to 0.85 for CE, and 0.47 to 0.94 for VE, respectively. The h2 estimates for all evaluated traits varied from moderate to high magnitude across AOPU and THI scales, indicating that genetic selection can result in rapid genetic progress for the evaluated traits. There was a reranking among the best animals in different AOPU and THI. It is possible to select dairy Gir cattle tolerant to heat stress to improve oocyte and embryo production.


Subject(s)
Lactation , Milk , Female , Cattle/genetics , Animals , Heat-Shock Response/genetics , Humidity , Oocytes , Hot Temperature
4.
Rev. bras. zootec ; 51: e20220017, 2022. tab, graf
Article in English | VETINDEX | ID: biblio-1442782

ABSTRACT

The objective of this work is to estimate genetic parameters and breeding values to improve embryo and oocyte production, using repeatability and random regression models (RRM) for Gir dairy cattle. We used 11,398 records of ovum pick-up from 1,747 dairy Gir donors and evaluated sixteen different models: the traditional repeatability model and fifteen RRM, each of which considered a different combination of Legendre polynomial regressors to describe the additive genetic and permanent environment effects. The 4G1P model (four regressors for the genetic effect and one regressor for the permanent environment effect) is the most suitable model to analyze the number of viable and total oocytes, while the 3G1P is the best model to analyze the number of cleaved and viable embryos, according to the values of the Akaike information criterion (AIC) and the Bayesian information criterion (BIC). The heritability estimated with the RRM was higher than that estimated with the repeatability model. The high repeatability reported for oocyte and embryo count traits indicates that donors, which had high oocyte and embryo counts in the first ovum pick-up, should maintain this result in the next ovum pick-up. Genetic correlations between adjacent ages were high and positive, while genetic correlations between extreme ages were weak. We observed a reranking of the top sires and females (heifers and cows) over the period evaluated. The reliability of the estimated breeding values by RRM showed changes across age, and the expected genetic gains by RRM are larger. This shows that RRM is most suitable alternative for the evaluation and selection of oocyte and embryo count traits.(AU)


Subject(s)
Animals , Female , Oocytes , Cattle/genetics , Fertilization in Vitro/veterinary , Embryo, Mammalian , Regression Analysis
5.
Anim Sci J ; 88(2): 254-258, 2017 Feb.
Article in English | MEDLINE | ID: mdl-27312927

ABSTRACT

This study evaluated the effect of the protected fatty acid inclusion during estrus synchronization on reproductive parameters. Goats (n = 32) received progestagen sponges for 6 days and 200 IU equine chorionic gonadotropin and 30 µg d-cloprostenol were given on Day 5. No difference was found among control (C), 1% protected fatty acid inclusion (C + 1%) or 4% protected fatty acid inclusion (C + 4%) groups, respectively, in estrus (100.0, 100.0 or 90.9%), estrus duration (31.6 ± 12.3; 43.2 ± 12.9 or 40.8 ± 14.1 h), animals ovulating (100.0, 90.0 or 100.0%) or ovulation rate (1.3 ± 0.5; 1.1 ± 0.3 or 1.2 ± 0.4). The interval from sponge removal to ovulation and from estrus to ovulation, respectively, were shorter for C + 4% (45.2 ± 8.0 h; 18.3 ± 11.0 h) compared with C (56.3 ± 12.6 h; 30.6 ± 10.5 h) or C + 1% (57.7 ± 8.7 h; 30.3 ± 11.1 h). The average ovulatory follicle diameter was smaller for C + 4% (6.2 ± 0.7 mm) than C (7.5 ± 0.8 mm), but similar to C + 1% (7.0 ± 1.5 mm). Insulin, insulin-like growth factor 1, glucose and progesterone concentrations were similar among groups. The inclusion of protected fatty acid during synchronization treatment promoted no benefits on ovulation rate, but 4% anticipated the ovulation time.


Subject(s)
Diet/veterinary , Dietary Supplements , Estrus Synchronization , Estrus , Fatty Acids/administration & dosage , Goats/physiology , Ovulation , Animals , Chorionic Gonadotropin , Cloprostenol , Dairying , Progestins
SELECTION OF CITATIONS
SEARCH DETAIL