Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Langmuir ; 38(46): 14140-14152, 2022 Nov 22.
Article in English | MEDLINE | ID: mdl-36350015

ABSTRACT

The design of hydrophobic surfaces requires a material which has a low solid surface tension and a simple fabrication process for anchoring and controlling the surface morphology. A generic method for the spontaneous formation of robust instability patterns is proposed through the hydrosilylation of a fluoroalkene bearing dangling chains, Rf = C6F13(CH2)3-, with a soft polymethylhydrosiloxane (PMHS) spin-coated gel polymer (0.8 µm thick) using Karstedt catalyst. These patterns were easily formed by an irreversible swelling reaction due to the attachment of a layer to various substrates. The buckling instability was created by two different approaches for a gel layer bound to a rigid silicon wafer substrate (A) and to a soft nonswelling silicone elastomer foundation (B). The observations of grafted Rf-PMHS films in the swollen state by microscopy revealed two distinct permanent patterns on various substrates: dotlike of wavelength λ = 0.4-0.7 µm (A) or wrinkle of wavelength λ = 4-7 µm (B). The elastic moduli ratios of film/substrate were determined using PeakForce quantitative nanomechanical mapping. The characteristic wavelengths (λ) of the patterns for systems A and B were quantitatively estimated in relation to the thickness of the top layer. A diversity of wrinkle morphologies can be achieved by grafting different side chains on pristine PMHS films. The water contact angle (WCA) hysteresis of fluorinated chain (Rf) was enhanced upon roughening the surfaces, giving highly hydrophobic surface properties for water with static/hysteresis WCAs of 136°/74° in the resulting wrinkle (B) and 119°/41° in the dotlike of lower roughness (A). The hydrophobic properties of grafted films on A with various mixtures of hexyl/fluoroalkyl chains were characterized by static CA: WCA 104-119°, ethylene glycol CA 80-96°, and n-hexadecane CA 17-61°. A very low surface energy of 15 mN/m for Rf-PMHS was found on the smoother dotlike pattern.

2.
Colloids Surf B Biointerfaces ; 101: 189-95, 2013 Jan 01.
Article in English | MEDLINE | ID: mdl-22809594

ABSTRACT

Non-specific adsorption is a crucial problem in the biomedical field. To produce surfaces avoiding this phenomenon, we functionalized thin (7-180 nm) poly(methylhydrosiloxane) (PMHS) network films at room temperature (≈20°C) with phospholipids (PL) bearing a phosphorylcholine head. Regardless of their mode of preparation (casting or immersion), all surfaces appeared to be very hydrophilic with a captive air-bubble contact angle stabilized around 40°. The thin films were protein-repellent in phosphate saline buffer pH 7.4 according to analysis by normal scanning confocal fluorescence. Neither was any adsorption or spreading of l-α-phosphatidylcholine liposomes on such films observed. In addition, amino functional groups could be easily attached to the surface remaining available for further functionalization.


Subject(s)
Biocompatible Materials/chemistry , Phosphatidylcholines/chemistry , Adsorption , Fluorescent Dyes , Membranes, Artificial , Microscopy, Atomic Force , Microscopy, Confocal , Particle Size , Phospholipids/chemistry , Photoelectron Spectroscopy , Proteins/chemistry , Surface Properties
3.
Langmuir ; 27(18): 11536-44, 2011 Sep 20.
Article in English | MEDLINE | ID: mdl-21848263

ABSTRACT

Surface anchored poly(methylhydrosiloxane) (PMHS) thin films on oxidized silicon wafers or glass substrates were functionalized via the SiH hydrosilylation reaction with the internal double bonds of 1,2-dilinoleoyl-sn-glycero-3-phosphorylcholine (18:2 Cis). The surface was characterized by X-ray photoelectron spectroscopy, contact angle measurements, atomic force microscopy, and scanning electron microscopy. These studies showed that the PMHS top layer could be efficiently modified resulting in an interfacial high density of phospholipids. Grafted phospholipids made the initially hydrophobic surface (θ = 106°) very hydrophilic and repellent toward avidin, bovine serum albumin, bovine fibrinogen, lysozyme, and α-chymotrypsin adsorption in phosphate saline buffer pH 7.4. The surface may constitute a new background-stable support with increased biocompatibility. Further possibilities of functionalization on the surface remain available owing to the formation of interfacial SiOH groups by Karstedt-catalyzed side reactions of SiH groups with water. The presence of interfacial SiOH groups was shown by zeta potential measurements. The reactivity and surface density of SiOH groups were checked by fluorescence after reaction of a monoethoxy silane coupling agent bearing Alexa as fluorescent probe.


Subject(s)
Phospholipids/chemistry , Phosphorylcholine/chemistry , Proteins/chemistry , Adsorption , Animals , Cattle , Siloxanes/chemistry , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...