Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Med Chem Lett ; 12(8): 1333-1341, 2021 Aug 12.
Article in English | MEDLINE | ID: mdl-34413963

ABSTRACT

In the context of drug repositioning and expanding the existing structure-activity relationship around astemizole (AST), a new series of analogues were designed, synthesized, and evaluated for their antiplasmodium activity. Among 46 analogues tested, compounds 21, 30, and 33 displayed high activities against asexual blood stage parasites (PfNF54 IC50 = 0.025-0.043 µM), whereas amide compound 46 additionally showed activity against late-stage gametocytes (stage IV/V; PfLG IC50 = 0.6 ± 0.1 µM) and 860-fold higher selectivity over hERG (46, SI = 43) compared to AST. Several analogues displaying high solubility (Sol > 100 µM) and low cytoxicity in the Chinese hamster ovary (SI > 148) cell line have also been identified.

2.
ACS Infect Dis ; 7(7): 1945-1955, 2021 07 09.
Article in English | MEDLINE | ID: mdl-33673735

ABSTRACT

The continued emergence of resistance to front-line antimalarial treatments is of great concern. Therefore, new compounds that potentially have a novel target in various developmental stages of Plasmodium parasites are needed to treat patients and halt the spread of malaria. Here, several benzimidazole derivatives were screened for activity against the symptom-causing intraerythrocytic asexual blood stages and the transmissible gametocyte stages of P. falciparum. Submicromolar activity was obtained for 54 compounds against asexual blood stage parasites with 6 potent at IC50 < 100 nM while not displaying any marked toxicity against mammalian cells. Nanomolar potency was also observed against gametocytes with two compounds active against early stage gametocytes and two compounds active against late-stage gametocytes. The transmission-blocking potential of the latter was confirmed as they could prevent male gamete exflagellation and the lead compound reduced transmission by 72% in an in vivo mosquito feeding model. These compounds therefore have activity against multiple stages of Plasmodium parasites with potential for differential targets.


Subject(s)
Malaria, Falciparum , Parasites , Animals , Benzimidazoles/pharmacology , Humans , Life Cycle Stages , Malaria, Falciparum/drug therapy , Male , Plasmodium falciparum
SELECTION OF CITATIONS
SEARCH DETAIL
...