Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Phys Chem A ; 124(47): 9832-9843, 2020 Nov 25.
Article in English | MEDLINE | ID: mdl-33196198

ABSTRACT

Soil minerals and organic matter play critical roles in nutrient cycling and other life-essential biogeochemical processes, yet the structural and dynamical details of natural organic matter (NOM) film formation on smectites are not fully understood on the molecular scale. XRD of Suwannee River NOM-hectorite (a smectite clay) complexes shows that the humic and fulvic components of NOM bind predominantly at the external surfaces of packets of smectite platelets rather than in the interlayer slit pores, suggesting that the key behavior governing smectite-NOM interactions takes place in mesopores between smectite particles. New molecular dynamics modeling of a ∼110 ŠH2O-saturated smectite mesopore at near-neutral pH shows that model NOM molecules initially form small clusters of 2-3 NOM molecules near the center of the pore fluid. Formation of these clusters is driven by the hydrophobic mechanism, where aromatic/aliphatic regions associate with one another to minimize their interactions with H2O, and charge-balancing cations associated with the deprotonated carboxylate sites are located only at the outer surface of these clusters. Despite hydrophobicity driving the initial clustering, NOM clusters are formed more quickly when high-charge-density cations like Ca2+ are present vs low-charge-density cations like Cs+, as the former cations more effectively minimize the electrostatic repulsions between the negatively charged NOM molecules. Once the small hydrophobicity-driven NOM clusters form, the simulations show that Ca2+ promotes the aggregation of NOM clusters through tetradentate Ca2+ bridges involving carboxylate groups on two different NOM clusters. Importantly, our studies indicate that Ca2+ plays a crucial role in binding the NOM clusters to the smectite surface, which occurs through multiple quaternary complexes (Ob)-H2O-Ca2+-COO-NOM. In contrast, Cs+ never forms any coordination or acts like bridges between NOM molecules nor as ion bridges to the smectite surface. Additionally, we observe the formation of a metastable superaggregate involving all 16 NOM molecules several times in a Ca2+-bearing mesopore fluid. Superaggregates are never observed in the simulations involving Cs+. The modeling results are fully consistent with helium ion microscope images of NOM-hectorite complexes suggesting that NOM surface films develop when preformed NOM clusters interact with smectite surfaces. Overall, the binding of NOM clusters to the outer surfaces of smectite particles and the formation of large NOM aggregates at neutral pH occur through cation bridging, and cation bridging only occurs when high-charge-density cations like Ca2+ are present.

2.
Environ Sci Technol ; 54(11): 6602-6609, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32319755

ABSTRACT

Plants could mobilize (dissolution followed by vertical transport) uranium (U) from mineral forms that are otherwise stable. However, the variability of this plant-mediated mobilization of U as a function of the presence of various essential plant nutrients contained in these minerals remains unknown. A series of column experiments were conducted using Andropogon virginicus to quantify the vertical transport of U from stable mineral forms as influenced by the chemical and physical coexistence of U with the essential nutrient, phosphorus (P). The presence of plants significantly increased the vertical migration of U only when U was precipitated with P (UO2HPO4·4H2O; chernikovite) but not from UO2 (uraninite) that lacks any essential plant nutrient. The U dissolution was further increased when chernikovite co-occurred with a sparingly available form of P (FePO4) under P-limited growing conditions. Similarly, A. virginicus accumulated the highest amount of U from chernikovite (0.05 mg/g) in the presence of FePO4 compared to that of uraninite (no-P) and chernikovite supplemented with KH2PO4. These results signify an increased plant-mediated dissolution, uptake, and leaching of radioactive contaminants in soils that are nutrient deficient, a key factor that should be considered in management at legacy contamination sites.


Subject(s)
Uranium , Water Pollutants, Radioactive , Minerals , Phosphorus , Solubility , Uranium/analysis , Water Pollutants, Radioactive/analysis
3.
Environ Sci Technol ; 52(14): 7652-7662, 2018 07 17.
Article in English | MEDLINE | ID: mdl-29722538

ABSTRACT

Apparent deficiency of soil mineral nutrients often triggers specific physio-morphological changes in plants, and some of these changes could also inadvertently increase the ability of plants to mobilize radionuclides from stable mineral forms. This work, through a series of sand-culture, hydroponics, and batch-equilibration experiments, investigated the differential ability of root exudates of Andropogon virginicus grown under conditions with variable phosphorus (P) availability (KH2PO4, FePO4, Ca3(PO4)2, and no P) to solubilize uranium (U) from the uranyl phosphate mineral Chernikovite. The mineral form of P, and hence the bioavailability of P, affected the overall composition of the root exudates. The lower bioavailable forms of P (FePO4 and Ca3(PO4)2), but not the complete absence of P, resulted in a higher abundance of root metabolites with chelating capacity at 72 hrs after treatment application. In treatments with lower P-bioavailability, the physiological amino acid concentration inside of the roots increased, whereas the concentration of organic acids in the roots decreased due to the active exudation. In batch dissolution experiments, the organic acids, but not amino acids, increase the dissolution U from Chernikovite. The root exudate matrix of plants exposed to low available forms of P induced a >60% increase in U dissolution from Chernikovite due to 5-16 times greater abundance of organic acids in these treatments. However, this was ca. 70% of the theoretical dissolution achievable by this exudate matrix. These results highlight the potential of using active management of soil P as an effective tool to alter the plant-mediated mobilization of U in contaminated soil.


Subject(s)
Phosphorus , Uranium , Minerals , Plant Roots , Soil
SELECTION OF CITATIONS
SEARCH DETAIL
...