Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Pain ; 24(7): 1262-1274, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36868488

ABSTRACT

Approximately half of patients with alcohol use disorder report pain and this can be severe during withdrawal. Many questions remain regarding the importance of biological sex, alcohol exposure paradigm, and stimulus modality to the severity of alcohol withdrawal-induced hyperalgesia. To examine the impact of sex and blood alcohol concentration on the time course of the development of mechanical and heat hyperalgesia, we characterized a mouse model of chronic alcohol withdrawal-induced pain in the presence or absence the alcohol dehydrogenase inhibitor, pyrazole. Male and female C57BL/6J mice underwent chronic intermittent ethanol vapor ± pyrazole exposure for 4 weeks, 4 d/wk to induce ethanol dependence. Hind paw sensitivity to the plantar application of mechanical (von Frey filaments) and radiant heat stimuli were measured during weekly observations at 1, 3, 5, 7, 24, and 48 hours after cessation of ethanol exposure. In the presence of pyrazole, males developed mechanical hyperalgesia after the first week of chronic intermittent ethanol vapor exposure, peaking at 48 hours after cessation of ethanol. By contrast, females did not develop mechanical hyperalgesia until the fourth week; this also required pyrazole and did not peak until 48 hours. Heat hyperalgesia was consistently observed only in females exposed to ethanol and pyrazole; this developed after the first weekly session and peaked at 1 hour. We conclude that Chronic alcohol withdrawal-induced pain develops in a sex-, time-, and blood alcohol concentration-dependent manner in C57BL/6J mice. PERSPECTIVE: Alcohol withdrawal-induced pain is a debilitating condition in individuals with AUD. Our study found mice experience alcohol withdrawal-induced pain in a sex and time course specific manor. These findings will aid in elucidating mechanisms of chronic pain and AUD and will help individuals remain abstinent from alcohol.


Subject(s)
Alcoholism , Substance Withdrawal Syndrome , Mice , Male , Female , Animals , Hyperalgesia/chemically induced , Ethanol/toxicity , Blood Alcohol Content , Hot Temperature , Mice, Inbred C57BL , Pain , Pyrazoles/pharmacology
2.
Curr Res Neurobiol ; 3: 100062, 2022.
Article in English | MEDLINE | ID: mdl-36405628

ABSTRACT

Triosephosphate isomerase deficiency (TPI Df) is a rare, aggressive genetic disease that typically affects young children and currently has no established treatment. TPI Df is characterized by hemolytic anemia, progressive neuromuscular degeneration, and a markedly reduced lifespan. The disease has predominately been studied using invertebrate and in vitro models, which lack key aspects of the human disease. While other groups have generated mammalian Tpi1 mutant strains, specifically with the mouse mus musculus, these do not recapitulate key characteristic phenotypes of the human disease. Reported here is the generation of a novel murine model of TPI Df. CRISPR-Cas9 was utilized to engineer the most common human disease-causing mutation, Tpi1 E105D , and Tpi1 null mice were also isolated as a frame-shifting deletion. Tpi1 E105D/null mice experience a markedly shortened lifespan, postural abnormalities consistent with extensive neuromuscular dysfunction, hemolytic anemia, pathological changes in spleen, and decreased body weight. There is a ∼95% reduction in TPI protein levels in Tpi1 E105D/null animals compared to wild-type littermates, consistent with decreased TPI protein stability, a known cause of TPI Df. This work illustrates the capability of Tpi1 E105D/null mice to serve as a mammalian model of human TPI Df. This work will allow for advancement in the study of TPI Df within a model with physiology similar to humans. The development of the model reported here will enable mechanistic studies of disease pathogenesis and, importantly, efficacy testing in a mammalian system for emerging TPI Df treatments.

3.
Proc Natl Acad Sci U S A ; 119(40): e2204828119, 2022 10 04.
Article in English | MEDLINE | ID: mdl-36161942

ABSTRACT

Biased G protein-coupled receptor (GPCR) ligands, which preferentially activate G protein or ß-arrestin signaling pathways, are leading to the development of drugs with superior efficacy and reduced side effects in heart disease, pain management, and neuropsychiatric disorders. Although GPCRs are implicated in the pathophysiology of Alzheimer's disease (AD), biased GPCR signaling is a largely unexplored area of investigation in AD. Our previous work demonstrated that GPR3-mediated ß-arrestin signaling modulates amyloid-ß (Aß) generation in vitro and that Gpr3 deficiency ameliorates Aß pathology in vivo. However, Gpr3-deficient mice display several adverse phenotypes, including elevated anxiety-like behavior, reduced fertility, and memory impairment, which are potentially associated with impaired G protein signaling. Here, we generated a G protein-biased GPR3 mouse model to investigate the physiological and pathophysiological consequences of selective elimination of GPR3-mediated ß-arrestin signaling in vivo. In contrast to Gpr3-deficient mice, G protein-biased GPR3 mice do not display elevated anxiety levels, reduced fertility, or cognitive impairment. We further determined that G protein-biased signaling reduces soluble Aß levels and leads to a decrease in the area and compaction of amyloid plaques in the preclinical AppNL-G-F AD mouse model. The changes in amyloid pathology are accompanied by robust microglial and astrocytic hypertrophy, which suggest a protective glial response that may limit amyloid plaque development in G protein-biased GPR3 AD mice. Collectively, these studies indicate that GPR3-mediated G protein and ß-arrestin signaling produce discrete and separable effects and provide proof of concept for the development of safer GPCR-targeting therapeutics with more directed pharmacological action for AD.


Subject(s)
Alzheimer Disease , Amyloidosis , Alzheimer Disease/metabolism , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Amyloid beta-Protein Precursor/metabolism , Animals , Disease Models, Animal , GTP-Binding Proteins/metabolism , Mice , Mice, Transgenic , Plaque, Amyloid/pathology , Receptors, G-Protein-Coupled/genetics , Receptors, G-Protein-Coupled/metabolism , beta-Arrestins/metabolism
4.
Brain Sci ; 10(9)2020 Sep 22.
Article in English | MEDLINE | ID: mdl-32971974

ABSTRACT

We and others previously reported that paternal preconception chronic ethanol exposure leads to molecular, physiological, and behavioral changes in offspring including reduced ethanol consumption and preference relative to controls. The goal of the present study was to further explore the impact of paternal ethanol exposure on a wide variety of basal and drug-induced behavioral responses in first generation offspring. Adult male mice were exposed to chronic intermittent vapor ethanol or control conditions for 5-6 weeks before being mated with ethanol-naïve females to produce ethanol (E)- and control (C)-sired offspring. E-sired male offspring showed stress hyporesponsivity in a stress-induced hyperthermia assay and E-sired female offspring had reduced binge-like ethanol consumption in a drinking in the dark assay compared to C-sired offspring. E-sired offspring also showed altered sensitivity to a sedative/hypnotic dose of the GABAergic drug midazolam, but not ketamine or ethanol, in a loss of the righting response assay. E-sired offspring did not differ from controls in marble burying, novel object location, novel object recognition, social interaction, bottle-brush, novelty suppressed feeding, prepulse inhibition, every-other-day ethanol drinking, or home cage activity assays. This study adds to a growing body of literature suggesting that like in utero alcohol exposure, paternal preconception alcohol exposure can also have effects that persist and impact behavior of offspring.

5.
Alcohol ; 87: 111-120, 2020 09.
Article in English | MEDLINE | ID: mdl-32445808

ABSTRACT

We previously reported that paternal preconception chronic ethanol exposure in mice imparts adult male offspring with reduced ethanol drinking preference and consumption, increased ethanol sensitivity, and attenuated stress responsivity. That same chronic ethanol exposure paradigm was later revealed to affect the sperm epigenome by altering the abundance of several small noncoding RNAs, a mechanism that mediates the intergenerational effects of numerous paternal environmental exposures. Although recent studies have revealed that the unique RNA signature of sperm is shaped during maturation in the epididymis via extracellular vesicles (EVs), formal demonstration that EVs mediate the effects of paternal preconception perturbations is lacking. Therefore, in the current study we tested the hypothesis that epididymal EV preparations are sufficient to induce intergenerational effects of paternal preconception ethanol exposure on offspring. To test this hypothesis, sperm from ethanol-naïve donors were incubated with epididymal EV preparations from chronic ethanol (Ethanol EV-donor) or control-treated (Control EV-donor) mice prior to in vitro fertilization (IVF) and embryo transfer. Progeny were examined for ethanol- and stress-related behaviors in adulthood. Ethanol EV-donors imparted reduced body weight at weaning and imparted modestly increased limited access ethanol intake to male offspring. Ethanol-EV donors also imparted increased basal anxiety-like behavior and reduced sensitivity to ethanol-induced anxiolysis to female offspring. Although Ethanol EV-donor treatment did not recapitulate the ethanol- or stress-related intergenerational effects of paternal ethanol following natural mating, these results demonstrate that coincubation of sperm with epididymal EV preparations is sufficient to impart intergenerational effects of ethanol through the male germline. This mechanism may generalize to the intergenerational effects of a wide variety of paternal preconception perturbations.


Subject(s)
Anxiety , Ethanol , Extracellular Vesicles , Paternal Exposure , Animals , Behavior, Animal , Epididymis , Epigenesis, Genetic , Ethanol/toxicity , Female , Male , Mice , Mice, Inbred C57BL , Spermatozoa
6.
Am J Bot ; 103(9): 1546-58, 2016 09.
Article in English | MEDLINE | ID: mdl-27589933

ABSTRACT

PREMISE OF THE STUDY: Studies of natural populations of polyploids increasingly highlight complex patterns of variation in ploidy and geographic distribution of cytotypes. As our understanding of the complexity of polyploidy grows, our understanding of the morphological correlates of polyploidy should expand as well. Here we examine in what ways, and to what degree, polyploidy affects the overall phenotype of a species across its distribution when there are three ploidies and geographic complexity in cytotype distribution. METHODS: We measured 31 morphological traits from stems, leaves, and flowers from up to 25 individuals from 11 sites across the distribution of Phlox amabilis. Chromosome counts and flow cytometry confirmed and expanded upon earlier research documenting diploid, tetraploid, and hexaploid populations, and also identified a site with two ploidies. Univariate and multivariate statistics were used to characterize the morphological effects of polyploidy. KEY RESULTS: We detected significant associations between morphology and ploidy in 11 traits spread across vegetative and reproductive structures. Generally, diploid individuals differed from polyploid individuals to a greater extent, and in different ways, than tetraploid and hexaploid plants differed from each other. Multivariate morphometrics demonstrated that the two primary axes of overall variation are driven by morphological traits associated with polyploidy, and individuals of different ploidies can be discriminated with 95% success. CONCLUSIONS: Polyploidy plays a major role in shaping overall morphological diversity in natural populations of P. amabilis.


Subject(s)
Magnoliopsida/anatomy & histology , Magnoliopsida/genetics , Phenotype , Polyploidy , Arizona , Flowers/anatomy & histology , Flowers/genetics , Plant Leaves/anatomy & histology , Plant Leaves/genetics , Plant Stems/anatomy & histology , Plant Stems/genetics
7.
Proc Natl Acad Sci U S A ; 113(25): E3558-67, 2016 06 21.
Article in English | MEDLINE | ID: mdl-27274063

ABSTRACT

A major hallmark of oxidative DNA damage after stroke is the induction of apurinic/apyrimidinic (AP) sites and strand breaks. To mitigate cell loss after oxidative DNA damage, ischemic cells rapidly engage the base excision-repair proteins, such as the AP site-repairing enzyme AP endonuclease-1 (APE1), also named redox effector factor-1 (Ref-1). Although forced overexpression of APE1 is known to protect against oxidative stress-induced neurodegeneration, there is no concrete evidence demonstrating a role for endogenous APE1 in the long-term recovery of gray and white matter following ischemic injury. To address this gap, we generated, to our knowledge, the first APE1 conditional knockout (cKO) mouse line under control of tamoxifen-dependent Cre recombinase. Using a well-established model of transient focal cerebral ischemia (tFCI), we show that induced deletion of APE1 dramatically enlarged infarct volume and impaired the recovery of sensorimotor and cognitive deficits. APE1 cKO markedly increased postischemic neuronal and oligodendrocyte degeneration, demonstrating that endogenous APE1 preserves both gray and white matter after tFCI. Because white matter repair is instrumental in behavioral recovery after stroke, we also examined the impact of APE1 cKO on demyelination and axonal conduction and discovered that APE1 cKO aggravated myelin loss and impaired neuronal communication following tFCI. Furthermore, APE1 cKO increased AP sites and activated the prodeath signaling proteins, PUMA and PARP1, after tFCI in topographically distinct manners. Our findings provide evidence that endogenous APE1 protects against ischemic infarction in both gray and white matter and facilitates the functional recovery of the central nervous system after mild stroke injury.


Subject(s)
DNA-(Apurinic or Apyrimidinic Site) Lyase/physiology , Gray Matter/physiopathology , Stroke/physiopathology , White Matter/physiopathology , Animals , Behavior, Animal , DNA-(Apurinic or Apyrimidinic Site) Lyase/genetics , Mice , Mice, Inbred C57BL , Mice, Knockout
8.
Genesis ; 54(1): 29-37, 2016 Jan.
Article in English | MEDLINE | ID: mdl-26575788

ABSTRACT

The kappa opioid receptor (KOR) has numerous important roles in the nervous system including the modulation of mood, reward, pain, and itch. In addition, KOR is expressed in many non-neuronal tissues. However, the specific cell types that express KOR are poorly characterized. Here, we report the development of a KOR-Cre knockin allele, which provides genetic access to cells that express KOR. In this mouse, Cre recombinase (Cre) replaces the initial coding sequence of the Opkr1 gene (encoding the kappa opioid receptor). We demonstrate that the KOR-Cre allele mediates recombination by embryonic day 14.5 (E14.5). Within the brain, KOR-Cre shows expression in numerous areas including the cerebral cortex, nucleus accumbens and striatum. In addition, this allele is expressed in epithelium and throughout many regions of the body including the heart, lung, and liver. Finally, we reveal that KOR-Cre mediates recombination of a subset of bipolar and amacrine cells in the retina. Thus, the KOR-Cre mouse line is a valuable new tool for conditional gene manipulation to enable the study of KOR.


Subject(s)
Gene Transfer Techniques , Receptors, Opioid, kappa/genetics , Receptors, Opioid, kappa/metabolism , Animals , Brain/metabolism , Female , Integrases/chemistry , Integrases/metabolism , Mice , Mice, Inbred C57BL , Mice, Transgenic , Models, Animal , Receptors, Opioid, kappa/biosynthesis , Signal Transduction
9.
Front Mol Neurosci ; 8: 39, 2015.
Article in English | MEDLINE | ID: mdl-26300722

ABSTRACT

BACKGROUND: Emerging research implicates ethanol (EtOH)-induced epigenetic modifications in regulating gene expression and EtOH consumption. However, consensus on specific epigenetic modifications induced by EtOH has not yet emerged, making it challenging to identify mechanisms and develop targeted treatments. We hypothesized that chronic intermittent EtOH (CIE) induces persistent changes in histone modifications across the cerebral cortex (CCx), nucleus accumbens (NAc), and prefrontal cortex (PFC), and that these histone modifications are altered in a knock-in mouse strain with altered sensitivity to EtOH. METHODS: C57BL/6J (B6) mice and α1SHLA knockin mice on a B6 background were exposed to 16 h of vapor EtOH or room air followed by 8 h of room air for 4 consecutive days and sacrificed at multiple time points up to 72 h following exposure. Histone modifications were assessed using Western blot and dot blot. RT-qPCR was used to study expression of chromatin modifying enzymes in NAc and PFC. RESULTS: In NAc, CIE significantly increased acetylation of histone subunit H3 at lysine 9 (H3K9ac) but not lysine 14 (H3K14ac) or lysine 27 (H3K27ac). In PFC, CIE significantly increased H3K9ac but not H3K14 or H3K27ac. There were no significant changes at 8 or 72 h after EtOH exposure in either NAc or PFC. CIE was also associated with increased expression of Kat2b, Kat5, and Tet1 in NAc but not PFC. In CCx, CIE had a significant effect on levels of H3K18ac; there was also a significant effect of the α1SHLA mutation on levels of H3K27me3, H3K14ac, and H3K18ac as well as a trend for H3S10pK14ac. CONCLUSIONS: The EtOH-induced histone modifications observed were transient and varied significantly between brain regions. A genetic mutation that altered sensitivity to EtOH was associated with altered induction of histone modifications during CIE. These results have implications for studying EtOH-induced histone modifications and EtOH sensitivity.

10.
Alcohol ; 47(8): 595-9, 2013 Dec.
Article in English | MEDLINE | ID: mdl-24199847

ABSTRACT

Genetically engineered mice are a valuable resource for studies of the behavioral effects of ethanol. However, for some behavioral tests of ethanol action, the rat is a superior model organism. Production of genetically engineered rats has been severely hampered due to technical limitations. Here we utilized a promising new technique for efficient site-specific gene modification to create a novel gene knockout rat line. This approach is based on transcriptional activator-like effector nucleases (TALENs). TALENs function in pairs and bind DNA in a sequence-specific manner. Upon binding to the target sequence, a functional nuclease is reconstituted that creates double-stranded breaks in the DNA that are efficiently repaired by non-homologous end joining. This error-prone process often results in deletions of varying lengths at the targeted locus. The toll-like receptor 4 (Tlr4) gene was selected for TALEN-mediated gene inactivation. Tlr4 has been implicated in ethanol-induced neuroinflammation and neurodegeneration, as well as multiple ethanol-induced behavioral effects. To generate Tlr4 knockout rats, a pair of TALEN constructs was created that specifically target Exon 1 immediately downstream of the start of translation. TALEN mRNAs were microinjected into the cytoplasm of one-cell Wistar rat embryos. Of 13 live-born pups that resulted, one harbored a mutation in Exon 1 of Tlr4. The mutated allele consisted of a 13 base-pair deletion that was predicted to create a frameshift mutation after amino acid 25. This founder rat successfully transmitted the mutation to F1 offspring. Heterozygous F1 offspring were interbred to produce homozygous F2 animals. Homozygous mutants expressed the 13-bp deletion in Tlr4 mRNA. In contrast to control rats that produced a robust increase in plasma tumor necrosis factor alpha in response to a lipopolysaccharide challenge, homozygous rats had a markedly attenuated response. Thus, the mutant Tlr4 allele generated by TALEN-mediated gene inactivation represents a null allele. This knockout rat line will be valuable for studies of ethanol action as well as more general inflammatory conditions including septic shock. In conclusion, TALEN-mediated gene targeting in rat zygotes represents an inexpensive, efficient, and rapid method for creating genetically engineered rats.


Subject(s)
Deoxyribonucleases/metabolism , Gene Knockout Techniques/methods , Gene Silencing , Toll-Like Receptor 4/deficiency , Alleles , Animals , Exons , Female , Homozygote , Lipopolysaccharides/pharmacology , Male , Mutation/genetics , RNA, Messenger/genetics , Rats , Toll-Like Receptor 4/genetics , Tumor Necrosis Factor-alpha/blood
11.
Am J Bot ; 99(5): 865-74, 2012 May.
Article in English | MEDLINE | ID: mdl-22523347

ABSTRACT

PREMISE OF THE STUDY: Polyploidy is widely recognized as an important process in the evolution of plants, but less attention has been paid to the study of intraspecific polyploidy, including its prevalence, formation, taxonomic implications, and effect on genetic diversity, structure, and gene flow within and among individuals and populations. Here we studied intraspecific ploidy level variation in the Phlox amabilis-P. woodhousei complex to determine the amount and distribution of cytotypic and genetic variation present and measure the extent of gene flow among species, cytotypes, and populations. METHODS: Flow cytometry and microsatellite analyses were used to ascertain cytotypic variation, genetic diversity, and population structure within and among eight populations of P. amabilis and 10 populations of P. woodhousei from Arizona and New Mexico. KEY RESULTS: Our analyses support the recognition of P. amabilis and P. woodhousei as two distinct species. Both species exhibit cytotypic variation with geographically structured diploid, tetraploid, and hexaploid populations, and genetic analyses suggest a combination of auto- and allopolyploidy in their formation. Diploid, tetraploid, and most hexaploid populations within species share much of their genetic variation, while some hexaploid populations are genetically distinct. All populations maintain moderately high genetic diversity and connectivity, and genetic structure is strongly influenced by geography. CONCLUSIONS: This study highlights the potential for complicated patterns of genetic variation relative to cytotypic variation and provides evidence for the role of cytotypic variation and geographic isolation in shaping diversity, differentiation, and potentially speciation in the P. amabilis-P. woodhousei complex.


Subject(s)
Ericaceae/cytology , Ericaceae/genetics , Genetic Variation , Arizona , Bayes Theorem , Cluster Analysis , Genetics, Population , Geography , Microsatellite Repeats/genetics , New Mexico , Principal Component Analysis , Species Specificity
12.
New Phytol ; 187(4): 1135-1145, 2010 Sep.
Article in English | MEDLINE | ID: mdl-20553396

ABSTRACT

*Humans are increasing both the deposition of reactive nitrogen (N) and concentrations of atmospheric CO(2) on Earth, but the combined effects on terrestrial ecosystems are not clear. In the absence of historical records, it is difficult to know if N availability is currently increasing or decreasing on regional scales. *To determine the nature and timing of past changes in grassland ecosystem dynamics, we measured the composition of stable carbon (C) and N isotopes in leaf tissue from 545 herbarium specimens of 24 vascular plant species collected in Kansas, USA from 1876 to 2008. We also parameterized a simple model of the terrestrial N cycle coupled with a stable isotope simulator to constrain processes consistent with observed patterns. *A prolonged decline in foliar N concentrations began in 1926, while a prolonged decline in foliar delta(15)N values began in 1940. Changes in the difference between foliar and atmospheric C isotopes reveal slightly increased photosynthetic water use efficiency since 1876. *The declines in foliar N concentrations and foliar delta(15)N suggest declining N availability in these grasslands during the 20th century despite decades of anthropogenic N deposition. Our results are consistent with progressive-nitrogen-limitation-type hypotheses where declines in N availability are driven by increased ecosystem N storage as a result of increased atmospheric CO(2).


Subject(s)
Carbon Isotopes/analysis , Ecosystem , Nitrogen Cycle , Nitrogen Isotopes/analysis , Nitrogen/analysis , Plant Leaves/chemistry , Poaceae/chemistry , Atmosphere , Humans , Kansas , Linear Models , Models, Biological , Photosynthesis , Poaceae/physiology
13.
Mol Ther ; 17(7): 1266-73, 2009 Jul.
Article in English | MEDLINE | ID: mdl-19436271

ABSTRACT

Maple syrup urine disease (MSUD; OMIM 248600) is an inborn error of metabolism of the branched chain alpha-ketoacid dehydrogenase (BCKDH) complex that is treated primarily by dietary manipulation of branched-chain amino acids (BCAA). Dietary restriction is lifelong and compliance is difficult. Liver transplantation significantly improves outcomes; however, alternative therapies are needed. To test novel therapies such as hepatocyte transplantation (HTx), we previously created a murine model of intermediate MSUD (iMSUD), which closely mimics human iMSUD. LacZ-positive murine donor hepatocytes were harvested and directly injected (10(5) cells/50 microl) into liver of iMSUD mice (two injections at 1-10 days of age). Donor hepatocytes engrafted into iMSUD recipient liver, increased liver BCKDH activity, improved blood total BCAA/alanine ratio, increased body weight at weaning, and extended the lifespan of HTx-treated iMSUD mice compared to phosphate-buffered saline (PBS)-treated and untreated iMSUD mice. Based on these data demonstrating partial metabolic correction of iMSUD in a murine model, coupled to the fact that multiple transplants are possible to enhance these results, we suggest that HTx represents a promising therapeutic intervention for MSUD that warrants further investigation.


Subject(s)
Cell- and Tissue-Based Therapy/methods , Hepatocytes/transplantation , Maple Syrup Urine Disease/mortality , Maple Syrup Urine Disease/therapy , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Animals , Body Weight , Disease Models, Animal , Liver/metabolism , Maple Syrup Urine Disease/pathology , Mice , Phenotype , Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Survival Analysis
14.
Alcohol Clin Exp Res ; 33(2): 289-99, 2009 Feb.
Article in English | MEDLINE | ID: mdl-19032579

ABSTRACT

BACKGROUND: Although many people consume alcohol (ethanol), it remains unknown why some become addicted. Elucidating the molecular mechanisms of tolerance and physical dependence (withdrawal) may provide insight into alcohol addiction. While the exact molecular mechanisms of ethanol action are unclear, gamma-aminobutyric acid type A receptors (GABA(A)-Rs) have been extensively implicated in ethanol action. The alpha1 GABA(A)-R subunit is associated with tolerance and physical dependence, but its exact role remains unknown. In this report, we tested the hypothesis that alpha1-GABA(A)-Rs mediate in part these effects of ethanol. METHODS: Ethanol-induced behavioral responses related to tolerance and physical dependence were investigated in knockin (KI) mice that have ethanol-insensitive alpha1 GABA(A)-Rs and wildtype (WT) controls. Acute functional tolerance (AFT) was assessed using the stationary dowel and loss of righting reflex (LORR) assays. Chronic tolerance was assessed on the LORR, fixed speed rotarod, hypothermia, and radiant tail-flick assays following 10 consecutive days of ethanol exposure. Withdrawal-related hyperexcitability was assessed by handling-induced convulsions following 3 cycles of ethanol vapor exposure/withdrawal. Immunoblots were used to assess alpha1 protein levels. RESULTS: Compared with controls, KI mice displayed decreased AFT and chronic tolerance to ethanol-induced motor ataxia, and also displayed heightened ethanol-withdrawal hyperexcitability. No differences between WT and KI mice were seen in other ethanol-induced behavioral measures. Following chronic exposure to ethanol, control mice displayed reductions in alpha1 protein levels, but KIs did not. CONCLUSIONS: We conclude that alpha1-GABA(A)-Rs play a role in tolerance to ethanol-induced motor ataxia and withdrawal-related hyperexcitability. However, other aspects of behavioral tolerance and physical dependence do not rely on alpha1-containing GABA(A)-Rs.


Subject(s)
Alcoholism/genetics , Alcoholism/metabolism , Central Nervous System Depressants/pharmacology , Ethanol/pharmacology , Receptors, GABA-A/genetics , Receptors, GABA-A/physiology , Animals , Blotting, Western , Drug Tolerance , Hot Temperature , Hyperkinesis/chemically induced , Hyperkinesis/prevention & control , Hyperkinesis/psychology , Hypothermia/chemically induced , Mice , Mice, Inbred C57BL , Pain Measurement/drug effects , Postural Balance/drug effects , Receptors, GABA-A/drug effects , Substance Withdrawal Syndrome/psychology
15.
Mol Ecol Resour ; 8(1): 116-8, 2008 Jan.
Article in English | MEDLINE | ID: mdl-21585731

ABSTRACT

In order to study diversification and microevolution in Phlox, we developed nine polymorphic microsatellite loci. In 20 individuals of Phlox pilosa from a single population, the average number of alleles per locus was 10.0 ± 5.1, and average observed and expected heterozygosities were 0.611 ± 0.234 and 0.769 ± 0.170, respectively. Most of these markers amplified successfully in 11 additional species of Phlox, representing a broad diversity of the genus, and some also amplified in more distantly related members of the Polemoniaceae. These microsatellite markers will be valuable for investigation of evolutionary processes in this important study system.

16.
BMC Neurosci ; 8: 85, 2007 Oct 10.
Article in English | MEDLINE | ID: mdl-17927825

ABSTRACT

BACKGROUND: The beta3 subunit of the gamma-aminobutyric acid type A receptor (GABAA-R) has been reported to be important for palate formation, anesthetic action, and normal nervous system function. This subunit has also been implicated in the pathogenesis of Angelman syndrome and autism spectrum disorder. To further investigate involvement of this subunit, we previously produced mice with a global knockout of beta3. However, developmental abnormalities, compensation, reduced viability, and numerous behavioral abnormalities limited the usefulness of that murine model. To overcome many of these limitations, a mouse line with a conditionally inactivated beta3 gene was engineered. RESULTS: Gene targeting and embryonic stem cell technologies were used to create mice in which exon 3 of the beta3 subunit was flanked by loxP sites (i.e., floxed). Crossing the floxed beta3 mice to a cre general deleter mouse line reproduced the phenotype of the previously described global knockout. Pan-neuronal knockout of beta3 was achieved by crossing floxed beta3 mice to Synapsin I-cre transgenic mice. Palate development was normal in pan-neuronal beta3 knockouts but ~61% died as neonates. Survivors were overtly normal, fertile, and were less sensitive to etomidate. Forebrain selective knockout of beta3 was achieved using alpha CamKII-cre transgenic mice. Palate development was normal in forebrain selective beta3 knockout mice. These knockouts survived the neonatal period, but ~30% died between 15-25 days of age. Survivors had reduced reproductive fitness, reduced sensitivity to etomidate, were hyperactive, and some became obese. CONCLUSION: Conditional inactivation of the beta3 gene revealed novel insight into the function of this GABAA-R subunit. The floxed beta3 knockout mice described here will be very useful for conditional knockout studies to further investigate the role of the beta3 subunit in development, ethanol and anesthetic action, normal physiology, and pathophysiologic processes.


Subject(s)
Anesthesia , Behavior, Animal/physiology , Body Weight/genetics , Conditioning, Operant/physiology , Gene Expression Regulation, Developmental/genetics , Receptors, GABA-A/physiology , Animals , Eating/genetics , Embryo, Mammalian , Female , Gene Targeting/methods , Male , Mice , Mice, Knockout , Mice, Transgenic , Receptors, GABA-A/deficiency , Reflex/genetics
17.
J Clin Microbiol ; 45(8): 2716-9, 2007 Aug.
Article in English | MEDLINE | ID: mdl-17596368

ABSTRACT

Blood samples from dogs with clinical signs compatible with ehrlichiosis were examined for infection of Ehrlichia canis using PCR, multiplex real-time PCR, and DNA sequencing analysis. Eleven of 25 samples were positive for a new strain of E. canis. This is the first molecular identification of E. canis infection in dogs from Peru.


Subject(s)
Dog Diseases/microbiology , Ehrlichia canis/classification , Ehrlichia canis/isolation & purification , Ehrlichiosis/veterinary , Animals , Blood/microbiology , DNA, Bacterial/chemistry , DNA, Bacterial/genetics , DNA, Ribosomal/chemistry , DNA, Ribosomal/genetics , Dogs , Ehrlichia canis/genetics , Ehrlichiosis/microbiology , Molecular Sequence Data , Peru , Phylogeny , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Sequence Homology, Nucleic Acid
18.
BMC Med Genet ; 7: 33, 2006 Mar 31.
Article in English | MEDLINE | ID: mdl-16579849

ABSTRACT

BACKGROUND: Maple Syrup Urine Disease (MSUD) is an inborn error of metabolism caused by a deficiency of branched-chain keto acid dehydrogenase. MSUD has several clinical phenotypes depending on the degree of enzyme deficiency. Current treatments are not satisfactory and require new approaches to combat this disease. A major hurdle in developing new treatments has been the lack of a suitable animal model. METHODS: To create a murine model of classic MSUD, we used gene targeting and embryonic stem cell technologies to create a mouse line that lacked a functional E2 subunit gene of branched-chain keto acid dehydrogenase. To create a murine model of intermediate MSUD, we used transgenic technology to express a human E2 cDNA on the knockout background. Mice of both models were characterized at the molecular, biochemical, and whole animal levels. RESULTS: By disrupting the E2 subunit gene of branched-chain keto acid dehydrogenase, we created a gene knockout mouse model of classic MSUD. The homozygous knockout mice lacked branched-chain keto acid dehydrogenase activity, E2 immunoreactivity, and had a 3-fold increase in circulating branched-chain amino acids. These metabolic derangements resulted in neonatal lethality. Transgenic expression of a human E2 cDNA in the liver of the E2 knockout animals produced a model of intermediate MSUD. Branched-chain keto acid dehydrogenase activity was 5-6% of normal and was sufficient to allow survival, but was insufficient to normalize circulating branched-chain amino acids levels, which were intermediate between wildtype and the classic MSUD mouse model. CONCLUSION: These mice represent important animal models that closely approximate the phenotype of humans with the classic and intermediate forms of MSUD. These animals provide useful models to further characterize the pathogenesis of MSUD, as well as models to test novel therapeutic strategies, such as gene and cellular therapies, to treat this devastating metabolic disease.


Subject(s)
Disease Models, Animal , Maple Syrup Urine Disease/genetics , Mice/genetics , 3-Methyl-2-Oxobutanoate Dehydrogenase (Lipoamide)/metabolism , Acyltransferases/analysis , Acyltransferases/genetics , Amino Acids, Branched-Chain/blood , Amino Acids, Branched-Chain/urine , Animals , Gene Targeting , Humans , Maple Syrup Urine Disease/enzymology , Maple Syrup Urine Disease/metabolism , Mice, Knockout , Mice, Transgenic
19.
Epilepsy Res ; 66(1-3): 99-115, 2005.
Article in English | MEDLINE | ID: mdl-16168624

ABSTRACT

The knockout mouse for the beta3 subunit of the GABAA receptor exhibits spontaneous epilepsy and hyperactivity, and has been proposed as a model for the severe developmental disorder, Angelman's syndrome, which is known to be of genetic origin. We have used this mutant to test an approach of therapeutic intervention prior to seizure onset by daily injection with diazepam during either the first or second postnatal week. Results showed differences between postnatal week 1 and week 2 injections both acutely, with respect to sedative effects, and in long-term outcome, with respect to EEG and behavioral tests measured at 12-14 weeks of age. The EEG of control mice remained unaffected under all conditions, but the EEG of beta3 (-/-) injected with diazepam in week 1 was worsened, showing increased oscillatory activity at 5-6Hz, and more myoclonic jerks, particularly among males. For beta3 (-/-) injected with diazepam in week 2, the EEG was normalized in half the mice but worsened similarly to week 1 in the other half. Neonatal diazepam injection had a long-term normalizing effect on behavior of beta3 (-/-) mice injected in week 1, but diazepam treatment in week 2 did not affect the hyperactive and circling behavior characteristic of the beta3 knockout mouse. Diazepam treatment in postnatal week 2 significantly decreased anxiety in the adult beta3 group. Diazepam treatment in both postnatal weeks 1 and 2 improved the motor coordination of beta3 (-/-) on the rotarod, although performance of control mice injected with diazepam in postnatal week 2 was significantly impaired. The observed long-term outcome of neonatal diazepam injections may result from interference with developmental processes, and shows that enhancing GABAergic activity with diazepam during the period where GABA can be excitatory can produce narrow stage-related effects on brain development.


Subject(s)
Anticonvulsants/therapeutic use , Diazepam/therapeutic use , Epilepsy/drug therapy , Epilepsy/genetics , Receptors, GABA-A/deficiency , Age Factors , Analysis of Variance , Animals , Animals, Newborn , Behavior, Animal/drug effects , Body Weight/drug effects , Body Weight/physiology , Electroencephalography/methods , Epilepsy/physiopathology , Exploratory Behavior/drug effects , Exploratory Behavior/physiology , Maze Learning/drug effects , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/drug effects , Motor Activity/physiology , Time
20.
Learn Mem ; 12(3): 327-33, 2005.
Article in English | MEDLINE | ID: mdl-15897254

ABSTRACT

The delta subunit of the GABA(A) receptor (GABA(A)R) is highly expressed in the dentate gyrus of the hippocampus. Genetic deletion of this subunit reduces synaptic and extrasynaptic inhibition and decreases sensitivity to neurosteroids. This paper examines the effect of these changes on hippocampus-dependent trace fear conditioning. Compared to controls, delta knockout mice exhibited enhanced acquisition of tone and context fear. Hippocampus-independent delay conditioning was normal in these animals. These results suggest that reduced inhibition in the dentate gyrus facilitates the acquisition of trace fear conditioning. However, the enhancement in trace conditioning was only observed in female knockout mice. The sex-specificity of this effect may be a result of neuroactive steroids. These compounds vary during the estrus cycle, can increase GABAergic inhibition, and have been shown to impair hippocampus-dependent learning. We propose that activation of GABA(A)Rs by neuroactive steroids inhibits learning processes in the hippocampus. Knockouts are immune to this effect because of the reduced neurosteroid sensitivity that accompanies deletion of the delta subunit. Relationships between neurosteroids, hippocampal excitability, and memory are discussed.


Subject(s)
Fear/physiology , Receptors, GABA-A/physiology , Acoustic Stimulation , Animals , Environment , Female , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Motor Activity/physiology , Postural Balance/physiology , Sex Characteristics
SELECTION OF CITATIONS
SEARCH DETAIL
...