Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Integr Comp Biol ; 47(4): 532-51, 2007 Oct.
Article in English | MEDLINE | ID: mdl-21672862

ABSTRACT

Aerobic organisms maintain O(2) homeostasis by responding to changes in O(2) supply and demand in both short and long time domains. In this review, we introduce several specific examples of respiratory plasticity induced by chronic changes in O(2) supply (environmental hypoxia or hyperoxia) and demand (exercise-induced and temperature-induced changes in aerobic metabolism). These studies reveal that plasticity occurs throughout the respiratory system, including modifications to the gas exchanger, respiratory pigments, respiratory muscles, and the neural control systems responsible for ventilating the gas exchanger. While some of these responses appear appropriate (e.g., increases in lung surface area, blood O(2) capacity, and pulmonary ventilation in hypoxia), other responses are potentially harmful (e.g., increased muscle fatigability). Thus, it may be difficult to predict whole-animal performance based on the plasticity of a single system. Moreover, plastic responses may differ quantitatively and qualitatively at different developmental stages. Much of the current research in this field is focused on identifying the cellular and molecular mechanisms underlying respiratory plasticity. These studies suggest that a few key molecules, such as hypoxia inducible factor (HIF) and erythropoietin, may be involved in the expression of diverse forms of plasticity within and across species. Studying the various ways in which animals respond to respiratory challenges will enable a better understanding of the integrative response to chronic changes in O(2) supply and demand.

2.
J Insect Physiol ; 52(5): 450-60, 2006 May.
Article in English | MEDLINE | ID: mdl-16530216

ABSTRACT

The eye imaginal disc of Manduca sexta is created early in the final larval instar from the adult eye primordium, which is composed of fully differentiated cells of the larval head capsule epidermis. Concomitant with the down-regulation of the larval epidermal program, expression of broad, a marker of pupal commitment, is activated in the primordium. The cells then detach from the cuticle, fold inward, and begin to proliferate at high levels to produce the inverted, eye imaginal disc. These and other events that begin on the first day of the final larval instar appear to mark the initiation of metamorphosis. Little is known about the endocrine control of the initiation of metamorphosis in any insect. The hemolymph titer of juvenile hormone (JH) declines to low levels during this period and the presence of JH is sufficient to repress development in cultured eye primordia. However, maintenance of JH at high levels in vivo by treatment with long-lasting JH mimics has no apparent effect on early steps in eye imaginal disc development. We discuss our findings in the context of the endocrine control of metamorphosis. The initiation of metamorphosis in Manduca, and perhaps a wide range of insect species, appears to involve the overcoming of JH repression by an unidentified, nutrient-dependent, hormonal factor.


Subject(s)
Eye/growth & development , Manduca/growth & development , Metamorphosis, Biological/physiology , Animals , Down-Regulation , Drosophila Proteins/metabolism , Eye/metabolism , Gene Expression , Insect Proteins/metabolism , Invertebrate Hormones/metabolism , Juvenile Hormones/physiology , Manduca/metabolism , Molecular Mimicry , Transcription Factors/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...