Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
1.
Proc Natl Acad Sci U S A ; 121(19): e2318003121, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38691588

ABSTRACT

Peptides presented by HLA-E, a molecule with very limited polymorphism, represent attractive targets for T cell receptor (TCR)-based immunotherapies to circumvent the limitations imposed by the high polymorphism of classical HLA genes in the human population. Here, we describe a TCR-based bispecific molecule that potently and selectively binds HLA-E in complex with a peptide encoded by the inhA gene of Mycobacterium tuberculosis (Mtb), the causative agent of tuberculosis in humans. We reveal the biophysical and structural bases underpinning the potency and specificity of this molecule and demonstrate its ability to redirect polyclonal T cells to target HLA-E-expressing cells transduced with mycobacterial inhA as well as primary cells infected with virulent Mtb. Additionally, we demonstrate elimination of Mtb-infected cells and reduction of intracellular Mtb growth. Our study suggests an approach to enhance host T cell immunity against Mtb and provides proof of principle for an innovative TCR-based therapeutic strategy overcoming HLA polymorphism and therefore applicable to a broader patient population.


Subject(s)
Histocompatibility Antigens Class I , Mycobacterium tuberculosis , Receptors, Antigen, T-Cell , T-Lymphocytes , Mycobacterium tuberculosis/immunology , Humans , Receptors, Antigen, T-Cell/immunology , Receptors, Antigen, T-Cell/metabolism , Histocompatibility Antigens Class I/immunology , Histocompatibility Antigens Class I/metabolism , T-Lymphocytes/immunology , HLA-E Antigens , Bacterial Proteins/immunology , Bacterial Proteins/metabolism , Bacterial Proteins/genetics , Tuberculosis/immunology
2.
Cell Rep Med ; 4(11): 101245, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37913775

ABSTRACT

Adjuvanted protein vaccines offer high efficacy, yet most potent adjuvants remain proprietary. Several adjuvant compounds are being developed by the Vaccine Formulation Institute in Switzerland for global open access clinical use. In the context of the R21 malaria vaccine, in a mouse challenge model, we characterize the efficacy and mechanism of action of four Vaccine Formulation Institute adjuvants: two liposomal (LQ and LMQ) and two squalene emulsion-based adjuvants (SQ and SMQ), containing QS-21 saponin (Q) and optionally a synthetic TLR4 agonist (M). Two R21 vaccine formulations, R21/LMQ and R21/SQ, offer the highest protection (81%-100%), yet they trigger different innate sensing mechanisms in macrophages with LMQ, but not SQ, activating the NLRP3 inflammasome. The resulting in vivo adaptive responses have a different TH1/TH2 balance and engage divergent innate pathways while retaining high protective efficacy. We describe how modular changes in vaccine formulation allow for the dissection of the underlying immune pathways, enabling future mechanistically informed vaccine design.


Subject(s)
Malaria Vaccines , Malaria , Animals , Mice , Liposomes , Th1 Cells , Emulsions , Adjuvants, Immunologic/pharmacology , Malaria/prevention & control
3.
Sci Immunol ; 6(55)2021 01 29.
Article in English | MEDLINE | ID: mdl-33514640

ABSTRACT

Group 2 innate lymphoid cells (ILC2s) orchestrate protective type 2 immunity and have been implicated in various immune disorders. In the mouse, circulatory inflammatory ILC2s (iILC2s) were identified as a major source of type 2 cytokines. The human equivalent of the iILC2 subset remains unknown. Here, we identify a human inflammatory ILC2 population that resides in inflamed mucosal tissue and is specifically marked by surface CD45RO expression. CD45RO+ ILC2s are derived from resting CD45RA+ ILC2s upon activation by epithelial alarmins such as IL-33 and TSLP, which is tightly linked to STAT5 activation and up-regulation of the IRF4/BATF transcription factors. Transcriptome analysis reveals marked similarities between human CD45RO+ ILC2s and mouse iILC2s. Frequencies of CD45RO+ inflammatory ILC2 are increased in inflamed mucosal tissue and in the circulation of patients with chronic rhinosinusitis or asthma, correlating with disease severity and resistance to corticosteroid therapy. CD45RA-to-CD45RO ILC2 conversion is suppressed by corticosteroids via induction of differentiation toward an immunomodulatory ILC2 phenotype characterized by low type 2 cytokine and high amphiregulin expression. Once converted, however, CD45RO+ ILC2s are resistant to corticosteroids, which is associated with metabolic reprogramming resulting in the activation of detoxification pathways. Our combined data identify CD45RO+ inflammatory ILC2s as a human analog of mouse iILC2s linked to severe type 2 inflammatory disease and therapy resistance.


Subject(s)
Asthma/drug therapy , Glucocorticoids/pharmacology , Leukocyte Common Antigens/metabolism , Lymphocytes/immunology , Nasal Polyps/drug therapy , Adolescent , Adult , Aged , Asthma/diagnosis , Asthma/immunology , Drug Resistance/immunology , Female , Glucocorticoids/therapeutic use , Humans , Immunity, Innate , Lymphocytes/metabolism , Male , Middle Aged , Nasal Polyps/immunology , Severity of Illness Index , Young Adult
4.
Hepatology ; 72(5): 1528-1540, 2020 11.
Article in English | MEDLINE | ID: mdl-32770836

ABSTRACT

BACKGROUND AND AIMS: Therapies for chronic hepatitis B virus (HBV) infection are urgently needed because of viral integration, persistence of viral antigen expression, inadequate HBV-specific immune responses, and treatment regimens that require lifelong adherence to suppress the virus. Immune mobilizing monoclonal T Cell receptors against virus (ImmTAV) molecules represent a therapeutic strategy combining an affinity-enhanced T Cell receptor with an anti-CD3 T Cell-activating moiety. This bispecific fusion protein redirects T cells to specifically lyse infected cells expressing the target virus-derived peptides presented by human leukocyte antigen (HLA). APPROACH AND RESULTS: ImmTAV molecules specific for HLA-A*02:01-restricted epitopes from HBV envelope, polymerase, and core antigens were engineered. The ability of ImmTAV-Env to activate and redirect polyclonal T cells toward cells containing integrated HBV and cells infected with HBV was assessed using cytokine secretion assays and imaging-based killing assays. Elimination of infected cells was further quantified using a modified fluorescent hybridization of viral RNA assay. Here, we demonstrate that picomolar concentrations of ImmTAV-Env can redirect T cells from healthy and HBV-infected donors toward hepatocellular carcinoma (HCC) cells containing integrated HBV DNA resulting in cytokine release, which could be suppressed by the addition of a corticosteroid in vitro. Importantly, ImmTAV-Env redirection of T cells induced cytolysis of antigen-positive HCC cells and cells infected with HBV in vitro, causing a reduction of hepatitis B e antigen and specific loss of cells expressing viral RNA. CONCLUSIONS: The ImmTAV platform has the potential to enable the elimination of infected cells by redirecting endogenous non-HBV-specific T cells, bypassing exhausted HBV-specific T cells. This represents a promising therapeutic option in the treatment of chronic hepatitis B, with our lead candidate now entering trials.


Subject(s)
Hepatitis B virus/immunology , Hepatitis B, Chronic/drug therapy , Receptors, Antigen, T-Cell/therapeutic use , Recombinant Fusion Proteins/pharmacology , T-Lymphocytes/drug effects , Antibodies, Monoclonal/genetics , Antibodies, Monoclonal/immunology , Antibodies, Monoclonal/pharmacology , Antibodies, Monoclonal/therapeutic use , CD3 Complex/antagonists & inhibitors , Cell Line, Tumor , Epitopes/immunology , HLA-A2 Antigen/immunology , Hepatitis B Surface Antigens/immunology , Hepatitis B virus/isolation & purification , Hepatitis B, Chronic/immunology , Hepatitis B, Chronic/virology , Hepatocytes , Humans , Immunoconjugates/genetics , Immunoconjugates/immunology , Immunoconjugates/pharmacology , Immunoconjugates/therapeutic use , Lymphocyte Activation/drug effects , Primary Cell Culture , Receptors, Antigen, T-Cell/genetics , Receptors, Antigen, T-Cell/immunology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/immunology , Recombinant Fusion Proteins/therapeutic use , T-Lymphocytes/immunology
6.
Front Immunol ; 9: 2902, 2018.
Article in English | MEDLINE | ID: mdl-30692988

ABSTRACT

Expression of the Autoimmune regulator (AIRE) outside of the thymus has long been suggested in both humans and mice, but the cellular source in humans has remained undefined. Here we identify AIRE expression in human tonsils and extensively analyzed these "extra-thymic AIRE expressing cells" (eTACs) using combinations of flow cytometry, CyTOF and single cell RNA-sequencing. We identified AIRE+ cells as dendritic cells (DCs) with a mature and migratory phenotype including high levels of antigen presenting molecules and costimulatory molecules, and specific expression of CD127, CCR7, and PDL1. These cells also possessed the ability to stimulate and re-stimulate T cells and displayed reduced responses to toll-like receptor (TLR) agonists compared to conventional DCs. While expression of AIRE was enriched within CCR7+CD127+ DCs, single-cell RNA sequencing revealed expression of AIRE to be transient, rather than stable, and associated with the differentiation to a mature phenotype. The role of AIRE in central tolerance induction within the thymus is well-established, however our study shows that AIRE expression within the periphery is not associated with an enriched expression of tissue-restricted antigens (TRAs). This unexpected finding, suggestive of wider functions of AIRE, may provide an explanation for the non-autoimmune symptoms of APECED patients who lack functional AIRE.


Subject(s)
Dendritic Cells/immunology , Palatine Tonsil/cytology , Transcription Factors/metabolism , B7-H1 Antigen/metabolism , Cell Communication/immunology , Cells, Cultured , Child, Preschool , Dendritic Cells/metabolism , Humans , Infant , Infant, Newborn , Interleukin-7 Receptor alpha Subunit/metabolism , Lymphocyte Activation , Palatine Tonsil/immunology , Palatine Tonsil/metabolism , Primary Cell Culture , Receptors, CCR7/metabolism , T-Lymphocytes/immunology , Transcription Factors/immunology , AIRE Protein
7.
Front Immunol ; 8: 1031, 2017.
Article in English | MEDLINE | ID: mdl-28912775

ABSTRACT

Human mucosal-associated invariant T (MAIT) cells are an important T cell subset that are enriched in tissues and possess potent effector functions. Typically such cells are marked by their expression of Vα7.2-Jα33/Jα20/Jα12 T cell receptors, and functionally they are major histocompatibility complex class I-related protein 1 (MR1)-restricted, responding to bacterially derived riboflavin synthesis intermediates. MAIT cells are contained within the CD161++ Vα7.2+ T cell population, the majority of which express the CD8 receptor (CD8+), while a smaller fraction expresses neither CD8 or CD4 coreceptor (double negative; DN) and a further minority are CD4+. Whether these cells have distinct homing patterns, phenotype and functions have not been examined in detail. We used a combination of phenotypic staining and functional assays to address the similarities and differences between these CD161++ Vα7.2+ T cell subsets. We find that most features are shared between CD8+ and DN CD161++ Vα7.2+ T cells, with a small but detectable role evident for CD8 binding in tuning functional responsiveness. By contrast, the CD4+ CD161++ Vα7.2+ T cell population, although showing MR1-dependent responsiveness to bacterial stimuli, display reduced T helper 1 effector functions, including cytolytic machinery, while retaining the capacity to secrete interleukin-4 (IL-4) and IL-13. This was consistent with underlying changes in transcription factor (TF) expression. Although we found that only a proportion of CD4+ CD161++ Vα7.2+ T cells stained for the MR1-tetramer, explaining some of the heterogeneity of CD4+ CD161++ Vα7.2+ T cells, these differences in TF expression were shared with CD4+ CD161++ MR1-tetramer+ cells. These data reveal the functional diversity of human CD161++ Vα7.2+ T cells and indicate potentially distinct roles for the different subsets in vivo.

8.
Immunity ; 46(1): 148-161, 2017 01 17.
Article in English | MEDLINE | ID: mdl-27986455

ABSTRACT

Animal models have highlighted the importance of innate lymphoid cells (ILCs) in multiple immune responses. However, technical limitations have hampered adequate characterization of ILCs in humans. Here, we used mass cytometry including a broad range of surface markers and transcription factors to accurately identify and profile ILCs across healthy and inflamed tissue types. High dimensional analysis allowed for clear phenotypic delineation of ILC2 and ILC3 subsets. We were not able to detect ILC1 cells in any of the tissues assessed, however, we identified intra-epithelial (ie)ILC1-like cells that represent a broader category of NK cells in mucosal and non-mucosal pathological tissues. In addition, we have revealed the expression of phenotypic molecules that have not been previously described for ILCs. Our analysis shows that human ILCs are highly heterogeneous cell types between individuals and tissues. It also provides a global, comprehensive, and detailed description of ILC heterogeneity in humans across patients and tissues.


Subject(s)
Flow Cytometry/methods , Lymphocyte Subsets/immunology , Lymphocytes/immunology , Humans , Immunity, Innate , Phenotype
9.
J Allergy Clin Immunol ; 135(5): 1358-66.e1-11, 2015 May.
Article in English | MEDLINE | ID: mdl-25441644

ABSTRACT

BACKGROUND: Prostaglandin D2 (PGD2) and cysteinyl leukotrienes (cysLTs) are lipid mediators derived from mast cells, which activate TH2 cells. The combination of PGD2 and cysLTs (notably cysteinyl leukotriene E4 [LTE4]) enhances TH2 cytokine production. However, the synergistic interaction of cysLTs with PGD2 in promoting TH2 cell activation is still poorly understood. The receptors for these mediators are drug targets in the treatment of allergic diseases, and hence understanding their interaction is likely to have clinical implications. OBJECTIVE: We aimed to comprehensively define the roles of PGD2, LTE4, and their combination in activating human TH2 cells and how such activation might allow the TH2 cells to engage downstream effectors, such as neutrophils, which contribute to the pathology of allergic responses. METHODS: The effects of PGD2, LTE4, and their combination on human TH2 cell gene expression were defined by using a microarray, and changes in specific inflammatory pathways were confirmed by means of PCR array, quantitative RT-PCR, ELISA, Luminex, flow cytometry, and functional assays, including analysis of downstream neutrophil activation. Blockade of PGD2 and LTE4 was tested by using TM30089, an antagonist of chemoattractant receptor-homologous molecule expressed on TH2 cells, and montelukast, an antagonist of cysteinyl leukotriene receptor 1. RESULTS: PGD2 and LTE4 altered the transcription of a wide range of genes and induced diverse functional responses in TH2 cells, including cell adhesion, migration, and survival and cytokine production. The combination of these lipids synergistically or additively enhanced TH2 responses and, strikingly, induced marked production of diverse nonclassical TH2 inflammatory mediators, including IL-22, IL-8, and GM-CSF, at concentrations sufficient to affect neutrophil activation. CONCLUSIONS: PGD2 and LTE4 activate TH2 cells through different pathways but act synergistically to promote multiple downstream effector functions, including neutrophil migration and survival. Combined inhibition of both PGD2 and LTE4 pathways might provide an effective therapeutic strategy for allergic responses, particularly those involving interaction between TH2 cells and neutrophils, such as in patients with severe asthma.


Subject(s)
Cell Communication/immunology , Leukotriene E4/metabolism , Neutrophils/immunology , Neutrophils/metabolism , Prostaglandin D2/metabolism , Th2 Cells/immunology , Th2 Cells/metabolism , Apoptosis/drug effects , Apoptosis/immunology , Cell Adhesion Molecules/genetics , Cell Adhesion Molecules/metabolism , Cell Communication/drug effects , Cell Communication/genetics , Chemotaxis, Leukocyte/drug effects , Chemotaxis, Leukocyte/genetics , Chemotaxis, Leukocyte/immunology , Cluster Analysis , Drug Synergism , Gene Expression , Gene Expression Profiling , Humans , Inflammation Mediators/metabolism , Leukotriene E4/pharmacology , Neutrophils/drug effects , Prostaglandin D2/pharmacology , Th2 Cells/drug effects
10.
Cell Rep ; 9(3): 1075-88, 2014 Nov 06.
Article in English | MEDLINE | ID: mdl-25437561

ABSTRACT

The C-type lectin CD161 is expressed by a large proportion of human T lymphocytes of all lineages, including a population known as mucosal-associated invariant T (MAIT) cells. To understand whether different T cell subsets expressing CD161 have similar properties, we examined these populations in parallel using mass cytometry and mRNA microarray approaches. The analysis identified a conserved CD161++/MAIT cell transcriptional signature enriched in CD161+CD8+ T cells, which can be extended to CD161+ CD4+ and CD161+TCRγδ+ T cells. Furthermore, this led to the identification of a shared innate-like, TCR-independent response to interleukin (IL)-12 plus IL-18 by different CD161-expressing T cell populations. This response was independent of regulation by CD161, which acted as a costimulatory molecule in the context of T cell receptor stimulation. Expression of CD161 hence identifies a transcriptional and functional phenotype, shared across human T lymphocytes and independent of both T cell receptor (TCR) expression and cell lineage.


Subject(s)
Cell Lineage , NK Cell Lectin-Like Receptor Subfamily B/metabolism , T-Lymphocytes/cytology , T-Lymphocytes/metabolism , Transcription, Genetic , Adult , CD4-Positive T-Lymphocytes/cytology , CD4-Positive T-Lymphocytes/drug effects , CD4-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/cytology , CD8-Positive T-Lymphocytes/drug effects , CD8-Positive T-Lymphocytes/metabolism , Cell Lineage/drug effects , Cell Lineage/immunology , Humans , Interleukin-12/pharmacology , Interleukin-18/pharmacology , Lymphocyte Activation/drug effects , Lymphocyte Activation/immunology , Phenotype , Principal Component Analysis , Receptors, Antigen, T-Cell, alpha-beta/metabolism , Receptors, Antigen, T-Cell, gamma-delta/metabolism , T-Lymphocyte Subsets/cytology , T-Lymphocyte Subsets/drug effects , T-Lymphocyte Subsets/metabolism , T-Lymphocytes/drug effects , Transcription, Genetic/drug effects
11.
Sci Transl Med ; 6(261): 261ra153, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25378645

ABSTRACT

A protective vaccine against hepatitis C virus (HCV) remains an unmet clinical need. HCV infects millions of people worldwide and is a leading cause of liver cirrhosis and hepatocellular cancer. Animal challenge experiments, immunogenetics studies, and assessment of host immunity during acute infection highlight the critical role that effective T cell immunity plays in viral control. In this first-in-man study, we have induced antiviral immunity with functional characteristics analogous to those associated with viral control in natural infection, and improved upon a vaccine based on adenoviral vectors alone. We assessed a heterologous prime-boost vaccination strategy based on a replicative defective simian adenoviral vector (ChAd3) and modified vaccinia Ankara (MVA) vector encoding the NS3, NS4, NS5A, and NS5B proteins of HCV genotype 1b. Analysis used single-cell mass cytometry and human leukocyte antigen class I peptide tetramer technology in healthy human volunteers. We show that HCV-specific T cells induced by ChAd3 are optimally boosted with MVA, and generate very high levels of both CD8(+) and CD4(+) HCV-specific T cells targeting multiple HCV antigens. Sustained memory and effector T cell populations are generated, and T cell memory evolved over time with improvement of quality (proliferation and polyfunctionality) after heterologous MVA boost. We have developed an HCV vaccine strategy, with durable, broad, sustained, and balanced T cell responses, characteristic of those associated with viral control, paving the way for the first efficacy studies of a prophylactic HCV vaccine.


Subject(s)
Adenoviridae/immunology , CD4-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/immunology , Hepacivirus/immunology , Hepatitis C/prevention & control , Immunologic Memory , Vaccination/methods , Viral Hepatitis Vaccines/administration & dosage , Viral Vaccines/administration & dosage , Adenoviridae/genetics , Animals , CD4-Positive T-Lymphocytes/virology , CD8-Positive T-Lymphocytes/virology , Cell Proliferation , Cells, Cultured , England , Enzyme-Linked Immunospot Assay , Healthy Volunteers , Hepacivirus/genetics , Hepacivirus/pathogenicity , Hepatitis C/diagnosis , Hepatitis C/immunology , Hepatitis C/virology , Hepatitis C Antibodies/blood , Histocompatibility Antigens Class I/immunology , Humans , Interferon-gamma Release Tests , Lymphocyte Activation , Pan troglodytes , Time Factors , Treatment Outcome , Vaccines, DNA , Viral Hepatitis Vaccines/genetics , Viral Hepatitis Vaccines/immunology , Viral Vaccines/genetics , Viral Vaccines/immunology
12.
Front Immunol ; 5: 400, 2014.
Article in English | MEDLINE | ID: mdl-25206355

ABSTRACT

Discovered 30 years ago, gamma delta (γδ) T-lymphocytes remain an intriguing and enigmatic T-cell subset. Although in humans they comprise a small fraction of the total circulating T-lymphocyte pool, they represent an important T-cell subset in tissues such as the liver, with roles bridging the innate and adaptive immune systems. The associations of γδ T-lymphocytes with chronic liver disease have been explored - however, there remain conflicting data as to whether these T-cells are pathogenic or protective. In patients with some forms of liver disease, their expansion in the periphery and especially in the liver may indeed help pathogen clearance, while in other conditions their presence may, in contrast, contribute to disease progression. γδ T-cells can also express CD161, a C-type lectin, and such cells have been found to be involved in the pathogenesis of inflammatory disease. CD161+ T-cells of diverse subsets are known to be enriched in the livers of patients with chronic hepatitis C. This article serves to provide a review of the γδ T-cell population and its role in hepatitis C and other chronic liver diseases, and also explores a potential role of the CD161+ γδ T-cells in liver diseases.

13.
Blood ; 121(6): 951-61, 2013 Feb 07.
Article in English | MEDLINE | ID: mdl-23255555

ABSTRACT

HIV infection is associated with immune dysfunction, perturbation of immune-cell subsets and opportunistic infections. CD161++ CD8+ T cells are a tissue-infiltrating population that produce IL17A, IL22, IFN, and TNFα, cytokines important in mucosal immunity. In adults they dominantly express the semi-invariant TCR Vα7.2, the canonical feature of mucosal associated invariant T (MAIT) cells and have been recently implicated in host defense against pathogens. We analyzed the frequency and function of CD161++ /MAIT cells in peripheral blood and tissue from patients with early stage or chronic-stage HIV infection. We show that the CD161++ /MAIT cell population is significantly decreased in early HIV infection and fails to recover despite otherwise successful treatment. We provide evidence that CD161++ /MAIT cells are not preferentially infected but may be depleted through diverse mechanisms including accumulation in tissues and activation-induced cell death. This loss may impact mucosal defense and could be important in susceptibility to specific opportunistic infections in HIV.


Subject(s)
HIV Infections/immunology , Immunity, Mucosal/immunology , NK Cell Lectin-Like Receptor Subfamily B/immunology , T-Lymphocyte Subsets/immunology , Adult , Anti-HIV Agents/therapeutic use , Antiretroviral Therapy, Highly Active , Apoptosis/immunology , CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , CD8-Positive T-Lymphocytes/virology , Cells, Cultured , Cohort Studies , Escherichia coli/immunology , Female , Flow Cytometry , HIV/drug effects , HIV/immunology , HIV Infections/blood , HIV Infections/drug therapy , Humans , Immunohistochemistry , Interleukin-17/immunology , Interleukin-17/metabolism , Leukocytes, Mononuclear/immunology , Leukocytes, Mononuclear/metabolism , Leukocytes, Mononuclear/virology , Lymphocyte Count , Male , Middle Aged , NK Cell Lectin-Like Receptor Subfamily B/metabolism , Receptors, CCR5/immunology , Receptors, CCR5/metabolism , Receptors, CCR6/immunology , Receptors, CCR6/metabolism , T-Lymphocyte Subsets/metabolism , T-Lymphocyte Subsets/virology , Time Factors
14.
Front Immunol ; 2: 36, 2011.
Article in English | MEDLINE | ID: mdl-22566826

ABSTRACT

Expression of the Natural Killer cell receptor CD161 has recently been identified on a subset of T cells, including both CD4+ T helper and CD8+ T cells. Expression of this molecule within the adult circulation is restricted to those T cells with a memory phenotype. However, the distinct properties of these T cell populations is yet to be fully determined, although expression of CD161 has been related to the secretion of interleukin-17, and therefore to a type 17 phenotype. Recent studies have aimed to determine both the origin of these cells and the significance of CD161 expression as either a marker of specific cell types or as an effector and regulator of lymphocyte function, and hence to characterize the role of these CD161+ cells within a variety of human diseases in which they have been implicated.

SELECTION OF CITATIONS
SEARCH DETAIL
...