Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
PLOS Glob Public Health ; 3(2): e0001281, 2023.
Article in English | MEDLINE | ID: mdl-36962860

ABSTRACT

When a person chooses a healthcare provider, they are trading off cost, convenience, and a latent third factor: "perceived quality". In urban areas of lower- and middle-income countries (LMICs), including slums, individuals have a wide range of choice in healthcare provider, and we hypothesised that people do not choose the nearest and cheapest provider. This would mean that people are willing to incur additional cost to visit a provider they would perceive to be offering better healthcare. In this article, we aim to develop a method towards quantifying this notion of "perceived quality" by using a generalised access cost calculation to combine monetary and time costs relating to a visit, and then using this calculated access cost to observe facilities that have been bypassed. The data to support this analysis comes from detailed survey data in four slums, where residents were questioned on their interactions with healthcare services, and providers were surveyed by our team. We find that people tend to bypass more informal local services to access more formal providers, especially public hospitals. This implies that public hospitals, which tend to incur higher access costs, have the highest perceived quality (i.e., people are more willing to trade cost and convenience to visit these services). Our findings therefore provide evidence that can support the 'crowding out' hypothesis first suggested in a 2016 Lancet Series on healthcare provision in LMICs.

2.
PLoS One ; 9(12): e115445, 2014.
Article in English | MEDLINE | ID: mdl-25531115

ABSTRACT

Sequence similarity tools, such as BLAST, seek sequences most similar to a query from a database of sequences. They return results significantly similar to the query sequence and that are typically highly similar to each other. Most sequence analysis tasks in bioinformatics require an exploratory approach, where the initial results guide the user to new searches. However, diversity has not yet been considered an integral component of sequence search tools for this discipline. Some redundancy can be avoided by introducing non-redundancy during database construction, but it is not feasible to dynamically set a level of non-redundancy tailored to a query sequence. We introduce the problem of diverse search and browsing in sequence databases that produce non-redundant results optimized for any given query. We define diversity measures for sequences and propose methods to obtain diverse results extracted from current sequence similarity search tools. We also propose a new measure to evaluate the diversity of a set of sequences that is returned as a result of a sequence similarity query. We evaluate the effectiveness of the proposed methods in post-processing BLAST and PSI-BLAST results. We also assess the functional diversity of the returned results based on available Gene Ontology annotations. Additionally, we include a comparison with a current redundancy elimination tool, CD-HIT. Our experiments show that the proposed methods are able to achieve more diverse yet significant result sets compared to static non-redundancy approaches. In both sequence-based and functional diversity evaluation, the proposed diversification methods significantly outperform original BLAST results and other baselines. A web based tool implementing the proposed methods, Div-BLAST, can be accessed at cedar.cs.bilkent.edu.tr/Div-BLAST.


Subject(s)
Computational Biology/methods , Databases, Protein , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Software , Algorithms , Humans
3.
Article in English | MEDLINE | ID: mdl-21464513

ABSTRACT

Availability of an effective tool for protein multiple structural alignment (MSTA) is essential for discovery and analysis of biologically significant structural motifs that can help solve functional annotation and drug design problems. Existing MSTA methods collect residue correspondences mostly through pairwise comparison of consecutive fragments, which can lead to suboptimal alignments, especially when the similarity among the proteins is low. We introduce a novel strategy based on: building a contact-window based motif library from the protein structural data, discovery and extension of common alignment seeds from this library, and optimal superimposition of multiple structures according to these alignment seeds by an enhanced partial order curve comparison method. The ability of our strategy to detect multiple correspondences simultaneously, to catch alignments globally, and to support flexible alignments, endorse a sensitive and robust automated algorithm that can expose similarities among protein structures even under low similarity conditions. Our method yields better alignment results compared to other popular MSTA methods, on several protein structure data sets that span various structural folds and represent different protein similarity levels. A web-based alignment tool, a downloadable executable, and detailed alignment results for the data sets used here are available at http://sacan.biomed. drexel.edu/Smolign and http://bio.cse.ohio-state.edu/Smolign.


Subject(s)
Computational Biology/methods , Protein Structure, Secondary , Proteins/chemistry , Sequence Analysis, Protein/methods , Databases, Protein , Models, Molecular , Sequence Alignment
4.
BMC Bioinformatics ; 10: 304, 2009 Sep 22.
Article in English | MEDLINE | ID: mdl-19772626

ABSTRACT

BACKGROUND: Dual-channel microarray experiments are commonly employed for inference of differential gene expressions across varying organisms and experimental conditions. The design of dual-channel microarray experiments that can help minimize the errors in the resulting inferences has recently received increasing attention. However, a general and scalable search tool and a corresponding database of optimal designs were still missing. DESCRIPTION: An efficient and scalable search method for finding near-optimal dual-channel microarray designs, based on a greedy hill-climbing optimization strategy, has been developed. It is empirically shown that this method can successfully and efficiently find near-optimal designs. Additionally, an improved interwoven loop design construction algorithm has been developed to provide an easily computable general class of near-optimal designs. Finally, in order to make the best results readily available to biologists, a continuously evolving catalog of near-optimal designs is provided. CONCLUSION: A new search algorithm and database for near-optimal microarray designs have been developed. The search tool and the database are accessible via the World Wide Web at http://db.cse.ohio-state.edu/MicroarrayDesigner. Source code and binary distributions are available for academic use upon request.


Subject(s)
Computational Biology/methods , Internet , Oligonucleotide Array Sequence Analysis/methods , Research Design , Software , Algorithms , User-Computer Interface
5.
Bioinformatics ; 24(24): 2872-9, 2008 Dec 15.
Article in English | MEDLINE | ID: mdl-18945684

ABSTRACT

MOTIVATION: Identification and comparison of similar three-dimensional (3D) protein structures has become an even greater challenge in the face of the rapidly growing structure databases. Here, we introduce Vorometric, a new method that provides efficient search and alignment of a query protein against a database of protein structures. Voronoi contacts of the protein residues are enriched with the secondary structure information and a metric substitution matrix is developed to allow efficient indexing. The contact hits obtained from a distance-based indexing method are extended to obtain high-scoring segment pairs, which are then used to generate structural alignments. RESULTS: Vorometric is the first to address both search and alignment problems in the protein structure databases. The experimental results show that Vorometric is simultaneously effective in retrieving similar protein structures, producing high-quality structure alignments, and identifying cross-fold similarities. Vorometric outperforms current structure retrieval methods in search accuracy, while requiring com-parable running times. Furthermore, the structural superpositions produced are shown to have better quality and coverage, when compared with those of the popular structure alignment tools. AVAILABILITY: Vorometric is available as a web service at http://bio.cse.ohio-state.edu/Vorometric


Subject(s)
Protein Conformation , Algorithms , Databases, Protein , Models, Molecular , Protein Structure, Secondary , Proteins/chemistry , Sequence Analysis, Protein , Structural Homology, Protein
6.
BMC Bioinformatics ; 9: 344, 2008 Aug 18.
Article in English | MEDLINE | ID: mdl-18710565

ABSTRACT

BACKGROUND: Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them. RESULTS: In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the enhanced partial order (EPO) algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. The EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study on miniprotein Trp-cage 1 demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events. CONCLUSION: The EPO algorithm is general and applicable to a wide range of applications. We demonstrate its generality and effectiveness by applying it to aligning multiple protein structures with low similarities. For user's convenience, we provide a web server for the algorithm at http://db.cse.ohio-state.edu/EPO.


Subject(s)
Algorithms , Models, Chemical , Models, Molecular , Protein Folding , Proteins/chemistry , Proteins/ultrastructure , Cluster Analysis , Computer Simulation , Motion , Protein Conformation
7.
Bioinformatics ; 24(14): 1647-9, 2008 Jul 15.
Article in English | MEDLINE | ID: mdl-18511469

ABSTRACT

MOTIVATION: Cell motility is a critical part of many important biological processes. Automated and sensitive cell tracking is essential to cell motility studies where the tracking results can be used for diagnostic or curative decisions and where mathematical models can be developed to deepen our understanding of the mechanisms underlying cell motility. RESULTS: We have developed CellTrack: a self-contained, extensible, and cross-platform software package for cell tracking and motility analysis. Besides the general purpose image enhancement, object segmentation and tracking algorithms, we have implemented a novel edge-based method for sensitive tracking of the cell boundaries, and constructed an ensemble of methods that achieves refined tracking results even under large displacements or deformations of the cells. AVAILABILITY: CellTrack is an Open Source project and is freely available at http://db.cse.ohio-state.edu/CellTrack.


Subject(s)
Cell Movement/physiology , Computational Biology/methods , Models, Biological , Software , User-Computer Interface , Animals , Automation , Computer Simulation , Humans , Models, Statistical , Models, Theoretical , Programming Languages
8.
Article in English | MEDLINE | ID: mdl-17951833

ABSTRACT

Understanding how proteins fold is essential to our quest in discovering how life works at the molecular level. Current computation power enables researchers to produce a huge amount of folding simulation data. Hence there is a pressing need to be able to interpret and identify novel folding features from them. In this paper, we model each folding trajectory as a multi-dimensional curve. We then develop an effective multiple curve comparison (MCC) algorithm, called the enhanced partial order (EPO) algorithm, to extract features from a set of diverse folding trajectories, including both successful and unsuccessful simulation runs. Our EPO algorithm addresses several new challenges presented by comparing high dimensional curves coming from folding trajectories. A detailed case study of applying our algorithm to a miniprotein Trp-cage(24) demonstrates that our algorithm can detect similarities at rather low level, and extract biologically meaningful folding events.


Subject(s)
Models, Chemical , Models, Molecular , Protein Folding , Proteins/chemistry , Proteins/ultrastructure , Sequence Analysis, Protein/methods , Binding Sites , Computer Simulation , Kinetics , Motion , Protein Binding , Protein Conformation , Surface Properties
9.
Bioinformatics ; 23(6): 709-16, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17237050

ABSTRACT

MOTIVATION: The rapidly growing protein structure repositories have opened up new opportunities for discovery and analysis of functional and evolutionary relationships among proteins. Detecting conserved structural sites that are unique to a protein family is of great value in identification of functionally important atoms and residues. Currently available methods are computationally expensive and fail to detect biologically significant local features. RESULTS: We propose Local Feature Mining in Proteins (LFM-Pro) as a framework for automatically discovering family-specific local sites and the features associated with these sites. Our method uses the distance field to backbone atoms to detect geometrically significant structural centers of the protein. A feature vector is generated from the geometrical and biochemical environment around these centers. These features are then scored using a statistical measure, for their ability to distinguish a family of proteins from a background set of unrelated proteins, and successful features are combined into a representative set for the protein family. The utility and success of LFM-Pro are demonstrated on trypsin-like serine proteases family of proteins and on a challenging classification dataset via comparison with DALI. The results verify that our method is successful both in identifying the distinctive sites of a given family of proteins, and in classifying proteins using the extracted features. AVAILABILITY: The software and the datasets are freely available for academic research use at http://bioinfo.ceng.metu.edu.tr/Pub/LFMPro.


Subject(s)
Algorithms , Models, Chemical , Proteins/chemistry , Proteins/ultrastructure , Sequence Alignment/methods , Sequence Analysis, Protein/methods , Software , Amino Acid Sequence , Binding Sites , Computer Simulation , Models, Molecular , Molecular Sequence Data , Protein Binding , Proteins/classification
10.
IEEE Trans Inf Technol Biomed ; 10(2): 254-63, 2006 Apr.
Article in English | MEDLINE | ID: mdl-16617614

ABSTRACT

An effective analysis of clinical trials data involves analyzing different types of data such as heterogeneous and high dimensional time series data. The current time series analysis methods generally assume that the series at hand have sufficient length to apply statistical techniques to them. Other ideal case assumptions are that data are collected in equal length intervals, and while comparing time series, the lengths are usually expected to be equal to each other. However, these assumptions are not valid for many real data sets, especially for the clinical trials data sets. An addition, the data sources are different from each other, the data are heterogeneous, and the sensitivity of the experiments varies by the source. Approaches for mining time series data need to be revisited, keeping the wide range of requirements in mind. In this paper, we propose a novel approach for information mining that involves two major steps: applying a data mining algorithm over homogeneous subsets of data, and identifying common or distinct patterns over the information gathered in the first step. Our approach is implemented specifically for heterogeneous and high dimensional time series clinical trials data. Using this framework, we propose a new way of utilizing frequent itemset mining, as well as clustering and declustering techniques with novel distance metrics for measuring similarity between time series data. By clustering the data, we find groups of analytes (substances in blood) that are most strongly correlated. Most of these relationships already known are verified by the clinical panels, and, in addition, we identify novel groups that need further biomedical analysis. A slight modification to our algorithm results an effective declustering of high dimensional time series data, which is then used for "feature selection." Using industry-sponsored clinical trials data sets, we are able to identify a small set of analytes that effectively models the state of normal health.


Subject(s)
Algorithms , Clinical Trials as Topic/methods , Database Management Systems , Databases, Factual , Information Storage and Retrieval/methods , Medical Records Systems, Computerized , Research Design , Time Factors
11.
Article in English | MEDLINE | ID: mdl-17369651

ABSTRACT

MHC (Major Histocompatibility Complex) proteins are categorized under the heterodimeric integral membrane proteins. The MHC molecules are divided into 2 subclasses, class I and class II. Two classes differ from each other in size of their binding pockets. Predicting the affinity of these peptides is important for vaccine design. It is also vital for understanding the roles of immune system in various diseases. Due to the variability of the locations of the class II peptide binding cores, predicting the affinity of these peptides is difficult. In this paper, we proposed a new method for predicting the affinity of the MHC Class II binding peptides based on their sequences. Our method classifies peptides as binding and non-binding. Our prediction method is based on a 3-step algorithm. In the first step we identify the informative n-grams based on their frequencies for both classes. In the next step, the alphabet size is reduced. At the last step, by utilizing the informative n-grams, the class of a given sequence is predicted. We have tested our method on the MHC Bench IV-b data set [13], and compared with various other methods in the literature.


Subject(s)
Computational Biology/methods , Histocompatibility Antigens Class II/chemistry , Peptides/chemistry , Algorithms , Antigen Presentation , Cluster Analysis , Computer Simulation , Databases, Protein , Dimerization , Genes, MHC Class II , Humans , Models, Biological , Molecular Conformation , Protein Binding , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...