Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Phys Chem A ; 128(20): 3957-3967, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38742917

ABSTRACT

We report the first coupled-cluster study of Auger decay in heavy metals. The zinc atom is used as a case study due to its relevance to the Auger emission properties of the 67Ga radionuclide. Coupled-cluster theory combined with complex basis functions is used to describe the transient nature of the core-ionized zinc atom. We also introduce second-order Møller-Plesset perturbation theory as an alternative method for computing partial Auger decay widths. Scalar-relativistic effects are included in our approach for computing Auger electron energies by means of the spin-free exact two-component one-electron Hamiltonian, while spin-orbit coupling is treated by means of perturbation theory. We center our attention on the K-edge Auger decay of zinc dividing the spectrum into three parts (K-LL, K-LM, and K-MM) according to the shells involved in the decay. The computed Auger spectra are in good agreement with experimental results. The most intense peak is found at an Auger electron energy of 7432 eV, which corresponds to a 1D2 final state arising from K-L2L3 transitions. Our results highlight the importance of relativistic effects for describing Auger decay in heavier nuclei. Furthermore, the effect of a first solvation shell is studied by modeling Auger decay in the hexaaqua-zinc(II) complex. We find that K-edge Auger decay is slightly enhanced by the presence of the water molecules as compared to the bare atom.

2.
J Mol Graph Model ; 124: 108569, 2023 11.
Article in English | MEDLINE | ID: mdl-37487370

ABSTRACT

Metalloproteinase-9 (MMP-9) is a key protein in cancer advancement and metastasis owing to its ability to degrade some extracellular matrix components. Mangiferin, a natural polyphenolic compound, has demonstrated through experimental and theoretical studies to be a great anticancer agent for the selective inhibition of MMP-9. This work aimed to evaluate the utility of several fluorinated compounds obtained from MF as possible Positron Emission Tomography (PET) radiopharmaceuticals oriented to MMP-9. Density Functional Theory calculations of MF were made to obtain the most active sites toward electrophilic and nucleophilic reactions and propose a synthetic route to produce its fluorinated derivatives. The reactivity study allowed us to propose a late-stage synthetic route based on click chemistry to obtain three fluorinated MF-based derivatives. Molecular docking calculations suggested that the derivative F-propyl-MF could be suitable as PET radiopharmaceutical owing to the establishment of a five-coordinated complex with the catalytic Zn atom belonging to the active site of MMP-9, crucial factor in the inhibition of MMP-9.


Subject(s)
Matrix Metalloproteinase 9 , Radiopharmaceuticals , Radiopharmaceuticals/pharmacology , Radiopharmaceuticals/chemistry , Molecular Docking Simulation , Matrix Metalloproteinase 9/chemistry , Positron-Emission Tomography/methods
3.
J Mol Model ; 29(6): 196, 2023 Jun 02.
Article in English | MEDLINE | ID: mdl-37266689

ABSTRACT

CONTEXT: Chlordecone (CLD) and ß-hexachlorocyclohexane (ß-HCH) are chlorinated pesticides that coexist as persistent organic pollutants in the groundwater of several countries in the Caribbean, being an environmental issue. This work evaluates theoretically the competitive formation of host-guest complexes pesticides@cyclodextrines (CDs) as an alternative for water purification and selective separation of pesticides. METHODS: Quantum mechanical calculations based on density functional theory (DFT) and classical molecular dynamics (MD) simulations were used to achieve information on geometries, energies, structure, and dynamics of guest-host complexes in the gas phase, implicit solvent medium, and in aqueous solutions. RESULTS: DFT studies showed that interactions of both pesticides with CDs are mediated by steric factors and guided by maximization of the hydrophobic interactions either with the other pesticide or with the CD cavity's inner atoms. MD results corroborate the formation of stable complexes of both pesticides with the studied CDs. α-CD exhibited a preference for the smaller ß-HCH molecule over the CLD that could not perturb the formed complex. CONCLUSIONS: The simulation of competitive formation with γ-CD illustrated that this molecule could accommodate both pesticides inside its cavity. These results suggest that CDs with smaller cavity sizes such as α-CD could be used for selective separation of ß-HCH from CLD in water bodies, while γ-CD could be used for methods that aim to remove both pesticides at the same time.

4.
J Chem Phys ; 158(6): 064109, 2023 Feb 14.
Article in English | MEDLINE | ID: mdl-36792526

ABSTRACT

We present an ab initio computational study of the Auger electron spectrum of benzene. Auger electron spectroscopy exploits the Auger-Meitner effect, and although it is established as an analytic technique, the theoretical modeling of molecular Auger spectra from first principles remains challenging. Here, we use coupled-cluster theory and equation-of-motion coupled-cluster theory combined with two approaches to describe the decaying nature of core-ionized states: (i) Feshbach-Fano resonance theory and (ii) the method of complex basis functions. The spectra computed with these two approaches are in excellent agreement with each other and also agree well with experimental Auger spectra of benzene. The Auger spectrum of benzene features two well-resolved peaks at Auger electron energies above 260 eV, which correspond to final states with two electrons removed from the 1e1g and 3e2g highest occupied molecular orbitals. At lower Auger electron energies, the spectrum is less well resolved, and the peaks comprise multiple final states of the benzene dication. In line with theoretical considerations, singlet decay channels contribute more to the total Auger intensity than the corresponding triplet decay channels.

5.
J Mol Model ; 28(9): 266, 2022 Aug 20.
Article in English | MEDLINE | ID: mdl-35987945

ABSTRACT

Mangiferin is a glycosylated xanthone widely distributed in nature, which exhibits wide pharmacological activities, highlighting its anti-cancer properties. Mangiferin interferes with inflammation, lipid, and calcium signaling, which selectively inhibits multiple NFkB target genes as interleukin-6, tumor necrosis factor, plasminogen, and matrix metalloproteinase, among others. In this work, the interactions of this polyphenol with MMP-9 and NF-κß are characterized by using computational chemistry methods. The results show MMP-9 inhibition by mangiferina is characterized for the interact with the catalytic Zn atom through a penta-coordinate structure. It is also demonstrated through a strong charge transfer established between mangiferin and Zn in the QM/MM study. Concerning the mangiferin/NF-κß system, the 92.3% of interactions between p50 sub-unity and DNA are maintained with a binding energy of - 8.04 kcal/mol. These findings indicate that mangiferin blocks the p50-p65/DNA interaction resulting in the loss of the functions of this hetero-dimeric member and suggesting inhibition of the cancer progression. Experimental results concerning the anti-cancer properties of mangiferin show that this natural compound can inhibit selectively MMP-9 and NF-ƙß. Although the anti-tumor properties of mangiferin are well defined, its molecular mechanisms of actions are not described. In this work, a computational study is carried out to characterize the interactions of mangiferin with these molecular targets. The results obtained corroborate the anti-proliferative and anti-apoptotic activity of mangiferin and provide a depiction of its mechanisms of action.


Subject(s)
Matrix Metalloproteinase 9 , Xanthones , Matrix Metalloproteinase 9/genetics , Matrix Metalloproteinase 9/metabolism , NF-kappa B/metabolism , Tumor Necrosis Factor-alpha/metabolism , Xanthones/chemistry , Xanthones/pharmacology
6.
J Mol Graph Model ; 111: 108057, 2022 03.
Article in English | MEDLINE | ID: mdl-34847519

ABSTRACT

Rapamycin (or sirolimus) is a macrolide that has shown to be useful as an immunosuppressant and that was studied in metabolic, neurological, or genetic disorders. Rapamycin is a specific natural inhibitor of the mechanistic target of rapamycin (mTOR) that is a kinase protein playing a pivotal role in cell growth and proliferation by activation of several metabolic processes. This work aimed to evaluate the utility of several compounds obtained from rapamycin and its semi-synthetic analogs everolimus and temsirolimus as possible radiopharmaceuticals oriented to this protein. Density Functional Theory calculations of these molecules were made and further analysis of the dual descriptor, charges populations, and of the electrostatic potential surfaces were performed. Molecular docking simulations were used to evaluate the interactions of the rapamycin with the studied candidates. They allowed us to propose two strategies for the synthesis of novel compounds based on electrophilic reactions. Molecular docking results also helped us to eliminate molecules that did not interact correctly with the target. Finally, we found for the first time, that the novel compounds synthesized through the electrophilic addition reaction that employed 18F-selectfluor, should maintain the biological activity of original compounds and could be suitable as Positron Emission Tomography radiopharmaceuticals targeting mTOR Complex1 system.


Subject(s)
Radiopharmaceuticals , TOR Serine-Threonine Kinases , MTOR Inhibitors , Molecular Docking Simulation , Positron-Emission Tomography , Protein Kinase Inhibitors/pharmacology
7.
Molecules ; 26(22)2021 Nov 18.
Article in English | MEDLINE | ID: mdl-34834061

ABSTRACT

The influence of nitrogen-containing surface groups (SGs) onto activated carbon (AC) over the adsorption of chlordecone (CLD) and ß-hexachlorocyclohexane (ß-HCH) was characterized by a molecular modelling study, considering pH (single protonated SGs) and hydration effect (up to three water molecules). The interactions of both pollutants with amines and pyridine as basic SGs of AC were studied, applying the multiple minima hypersurface (MMH) methodology and using PM7 semiempirical Hamiltonian. Representative structures from MMH were reoptimized using the M06-2X density functional theory. The quantum theory of atoms in molecules (QTAIM) was used to characterize the interaction types in order understanding the adsorption process. A favorable association of both pesticides with the amines and pyridine SGs onto AC was observed at all pH ranges, both in the absence and presence of water molecules. However, a greater association of both pollutants with the primary amine was found under an acidic pH condition. QTAIM results show that the interactions of CLD and ß-HCH with the SGs onto AC are governed by Cl···C interactions of chlorine atoms of both pesticides with the graphitic surface. Electrostatic interactions (H-bonds) were observed when water molecules were added to the systems. A physisorption mechanism is suggested for CLD and ß-HCH adsorption on nitrogen-containing SGs of AC.

8.
J Chem Inf Model ; 60(4): 2115-2125, 2020 04 27.
Article in English | MEDLINE | ID: mdl-32105472

ABSTRACT

The aim of this work is to describe the molecular inclusion of chlordecone with α-, ß-, and γ-cyclodextrin in aqueous solution using quantum mechanics. The guest-host complexes of chlordecone and cyclodextrins are modeled in aqueous solution using the multiple minima hypersurface methodology with a PM6-D3H4X semiempirical Hamiltonian, and the lowest energy minima obtained are reoptimized using the M06-2X density functional and the intermolecular interactions described using quantum theory of atoms in molecules (QTAIM). The studied complexes are classified according to the degree of inclusion, namely, total occlusion, partial occlusion, and external interaction. More stable complexes are obtained when γ-CD is used as the host molecule. The interactions characterized through QTAIM analysis are all of electrostatic nature, predominantly of dispersive type. In this work, a method based on the counterpoise correction is also discussed to mitigate the basis set superposition error in density functional theory calculations when using an implicit solvation model.


Subject(s)
Chlordecone , Cyclodextrins , Quantum Theory , Static Electricity , Water
9.
Environ Sci Pollut Res Int ; 27(33): 41105-41116, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32052338

ABSTRACT

The chlordecone (CLD) and the ß-hexachlorocyclohexane (ß-HCH) are persistent organic pollutants with a great environmental stability that cause severe affectations to health. The concentration of these pesticides in the environment is low, which represent a problem for their determination, even for the modern analytical methods. The labeling of these compounds with an iodine radioisotope for their use as radiotracers is a potential solution to this problem. The present work studies the interaction of 1-iodochlordecone (I-CLD) and ß-1-iodo-pentachlorocyclohexane (I-ß-HCH) with cyclodextrins (CDs), during the formation of molecular inclusion complexes pesticide@CDs. The methodology of multiple minima hypersurfaces, quantic calculations based on density functional theory and a topologic study of electronic density were used to corroborate the stability of I-CLD@CDs and I-ß-HCH@CDs complexes. Three main types of guest-host complexes in relation to the occlusion grade were observed: with total occlusion, with partial occlusion and external interaction without occlusion. The more stable complexes are obtained when the γ-CD is the host molecule. The formed complexes with radiolabelled pollutants are analogous with the ones reported in previous works. These results confirm the utility of these complexes for the removal of organochlorine pesticides from polluted water and, also, demonstrate the possibility of using the I-CLD and the I-ß-HCH as possible radiotracers for these pollutants in further studies with environmental proposes.


Subject(s)
Chlordecone , Cyclodextrins , Hydrocarbons, Chlorinated , Pesticides , beta-Cyclodextrins , Hydrocarbons, Chlorinated/analysis , Pesticides/analysis
10.
J Mol Graph Model ; 90: 94-103, 2019 07.
Article in English | MEDLINE | ID: mdl-31035099

ABSTRACT

Metaldehyde (MA) is an organic compound widely used in agriculture all around the world as molluscicide. There are growing concerns that relatively high levels of MA have been detected in surface water, which could be ascribed to the fact that it is transparent to common wastewater treatment processes. A theoretical study of the influence of activated carbon (AC) surface groups (SGs) on MA adsorption is done in order to help to understand the process and to evaluate the influence of the acid SGs over the adsorption in AC filters. Multiple Minima Hypersurface methodology was employed in order to study the interactions of the MA with acid SGs (hydroxyl and carboxyl) at acidic and neutral pH, and at different hydration conditions explicitly taking into account the solvent influence. Selected structures were re-optimized using Density Functional Theory and posteriorly refined to achieve a well-defined electron density to characterize the interactions by the Quantum Theory of Atoms in Molecules approach. The obtained results showed that the presence of SGs enhances the adsorption process. The deprotonated carboxyl and hydroxyl SGs of AC models show the strongest interactions, suggesting greater adsorption at neutral pH which is in concordance with experimental data. The main interactions are of a dispersive nature between the pesticide and the π-cloud of the AC and hydrogen bonds between the MA and the acid SGs suggesting that the adsorption process is driven by a physisorption mechanism. Water acts as an intermediary between the AC and MA and competing with it for the adsorption sites.


Subject(s)
Acetaldehyde/analogs & derivatives , Charcoal/chemistry , Acetaldehyde/chemistry , Adsorption , Density Functional Theory , Hydrogen Bonding , Hydrogen-Ion Concentration , Models, Theoretical , Quantum Theory , Solvents/chemistry , Surface Properties , Water/chemistry , Water Pollutants, Chemical/chemistry , Water Purification/methods
11.
RSC Adv ; 9(47): 27484-27499, 2019 Aug 29.
Article in English | MEDLINE | ID: mdl-35529240

ABSTRACT

The present work aimed to study the guest-host complexes of ß-hexachlorocyclohexane (ß-HCH), a pesticide with high environmental stability that can cause severe health problems, with the most common cyclodextrins (α-, ß-, and γ-CDs). The formation reactions of these molecular inclusion complexes were addressed in this research. The multiple minima hypersurface methodology, quantum calculations based on density functional theory and a topological exploration of the electron density based on the quantum theory of atoms in molecules approach were used to characterize the interaction spaces of the pollutant with the three CDs. Additionally, charge distribution, charge transfer and dual descriptor analyses were employed to elucidate the driving forces involved in the formation of these molecular inclusion complexes. Three types of fundamental interactions were observed: total occlusion, partial occlusion and external interaction (non-occlusion). Finally, experiments were performed to confirm the formation of the studied complexes. The most stable complexes were obtained when γ-CD was the host molecule. The interactions between the pesticide and CDs have fundamentally dispersive natures, as was confirmed experimentally by spectroscopic results. All the obtained results suggest the possibility of using CDs for the purification and treatment of water polluted with ß-HCH.

12.
J Mol Graph Model ; 81: 146-154, 2018 05.
Article in English | MEDLINE | ID: mdl-29554491

ABSTRACT

A theoretical study of the influence of acidic surface groups (SG) of activated carbon (AC) on chlordecone hydrate (CLDh) adsorption is presented, in order to help understanding the adsorption process under basic pH conditions. A seven rings aromatic system (coronene) with a functional group in the edge was used as a simplified model of AC to evaluate the influence of SG in the course of adsorption from aqueous solution at basic pH conditions. Two SG were modeled in their deprotonated form: carboxyl and hydroxyl (COO- and O-), interacting with CLDh. In order to model the solvation process, all systems under study were calculated with up to three water molecules. Multiple Minima Hypersurface (MMH) methodology was employed to study the interactions of CLDh with SG on AC using PM7 semiempirical Hamiltonian, to explore the potential energy surfaces of the systems and evaluate their thermodynamic association energies. The re-optimization of representative structures obtained from MMH was done using M06-2X Density Functional Theory. The Quantum Theory of Atoms in Molecules (QTAIM) was used to characterize the interaction types. As result, the association of CLDh with acidic SG at basic pH conditions preferentially occurs between the two alcohol groups of CLDh with COO- and O- groups and by dispersive interactions of chlorine atoms of CLDh with the graphitic surface. On the other hand, the presence of covalent interactions between the negatively charged oxygen of SG and one hydrogen atom of CLDh alcohol groups (O-⋯HO interactions) without water molecules, was confirmed by QTAIM study. It can be concluded that the interactions of CLDh with acidic SG of AC under basic pH conditions confirms the physical mechanisms of adsorption process.


Subject(s)
Carbon/chemistry , Chlordecone/chemistry , Hydrogen-Ion Concentration , Models, Theoretical , Density Functional Theory , Molecular Conformation , Surface Properties
SELECTION OF CITATIONS
SEARCH DETAIL
...