Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
PLoS Biol ; 21(6): e3002121, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37315073

ABSTRACT

Pluripotency defines the unlimited potential of individual cells of vertebrate embryos, from which all adult somatic cells and germ cells are derived. Understanding how the programming of pluripotency evolved has been obscured in part by a lack of data from lower vertebrates; in model systems such as frogs and zebrafish, the function of the pluripotency genes NANOG and POU5F1 have diverged. Here, we investigated how the axolotl ortholog of NANOG programs pluripotency during development. Axolotl NANOG is absolutely required for gastrulation and germ-layer commitment. We show that in axolotl primitive ectoderm (animal caps; ACs) NANOG and NODAL activity, as well as the epigenetic modifying enzyme DPY30, are required for the mass deposition of H3K4me3 in pluripotent chromatin. We also demonstrate that all 3 protein activities are required for ACs to establish the competency to differentiate toward mesoderm. Our results suggest the ancient function of NANOG may be establishing the competence for lineage differentiation in early cells. These observations provide insights into embryonic development in the tetrapod ancestor from which terrestrial vertebrates evolved.


Subject(s)
Homeodomain Proteins , Pluripotent Stem Cells , Animals , Homeodomain Proteins/metabolism , Ambystoma mexicanum/genetics , Ambystoma mexicanum/metabolism , Zebrafish/genetics , Cell Differentiation , Nanog Homeobox Protein/genetics , Nanog Homeobox Protein/metabolism , Gene Expression Regulation, Developmental
2.
Hepatology ; 69(5): 2061-2075, 2019 05.
Article in English | MEDLINE | ID: mdl-30561769

ABSTRACT

Patients with hepatocellular carcinoma (HCC) have a poor prognosis and limited therapeutic options. Alpha-fetoprotein (AFP) is often expressed at high levels in HCC and is an established clinical biomarker of the disease. Expression of AFP in nonmalignant liver can occur, particularly in a subset of progenitor cells and during chronic inflammation, at levels typically lower than in HCC. This cancer-specific overexpression indicates that AFP may be a promising target for immunotherapy. We verified expression of AFP in normal and diseased tissue and generated an affinity-optimized T-cell receptor (TCR) with specificity to AFP/HLA-A*02+ tumors. Expression of AFP was investigated using database searches, by qPCR, and by immunohistochemistry (IHC) analysis of a panel of human tissue samples, including normal, diseased, and malignant liver. Using in vitro mutagenesis and screening, we generated a TCR that recognizes the HLA-A*02-restricted AFP158-166 peptide, FMNKFIYEI, with an optimum balance of potency and specificity. These properties were confirmed by an extension of the alanine scan (X-scan) and testing TCR-transduced T cells against normal and tumor cells covering a variety of tissues, cell types, and human leukocyte antigen (HLA) alleles. Conclusion: We have used a combination of physicochemical, in silico, and cell biology methods for optimizing a TCR for improved affinity and function, with properties that are expected to allow TCR-transduced T cells to differentiate between antigen levels on nonmalignant and cancer cells. T cells transduced with this TCR constitute the basis for a trial of HCC adoptive T-cell immunotherapy.


Subject(s)
Carcinoma, Hepatocellular/immunology , HLA-A2 Antigen/metabolism , Liver Neoplasms/immunology , Receptors, Antigen, T-Cell/therapeutic use , alpha-Fetoproteins/metabolism , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/therapy , Hep G2 Cells , Humans , Immunotherapy/methods , Liver Neoplasms/metabolism , Liver Neoplasms/therapy , Receptors, Antigen, T-Cell/immunology
3.
FEBS J ; 283(6): 1025-38, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26613204

ABSTRACT

Metazoans have multiple ETS paralogues with overlapping or indiscriminate biological functions. Elk-1, one of three mammalian ternary complex factors (TCFs), is a well-conserved, ETS domain-containing transcriptional regulator of mitogen-responsive genes that operates in concert with serum response factor (SRF). Nonetheless, its genetic role remains unresolved because the elk-1 gene could be deleted from the mouse genome seemingly without adverse effect. Here we have explored the evolution of Elk-1 to gain insight into its conserved biological role. We identified antecedent Elk-1 proteins in extant early metazoans and used amino acid sequence alignments to chart the appearance of domains characteristic of human Elk-1. We then performed biochemical studies to determine whether putative domains apparent in the Elk-1 protein of a primitive hemichordate were functionally orthologous to those of human Elk-1. Our findings imply the existence of primordial Elk-1 proteins in primitive deuterostomes that could operate as mitogen-responsive ETS transcription factors but not as TCFs. The role of TCF was acquired later, but presumably prior to the whole genome duplications in the basal vertebrate lineage. Thus its evolutionary origins link Elk-1 to the appearance of mesoderm.


Subject(s)
Evolution, Molecular , ets-Domain Protein Elk-1/chemistry , ets-Domain Protein Elk-1/genetics , Amino Acid Sequence , Animals , Binding Sites , Conserved Sequence , Extracellular Signal-Regulated MAP Kinases/metabolism , HEK293 Cells , Humans , Mice , Molecular Sequence Data , Phylogeny , Protein Interaction Domains and Motifs , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Sequence Homology, Amino Acid , ets-Domain Protein Elk-1/metabolism
4.
Development ; 141(24): 4806-16, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25468943

ABSTRACT

During somitogenesis, epithelial somites form from the pre-somitic mesoderm (PSM) in a periodic manner. This periodicity is regulated by a molecular oscillator, known as the 'segmentation clock', that is characterised by an oscillatory pattern of gene expression that sweeps the PSM in a caudal-rostral direction. Key components of the segmentation clock are intracellular components of the Notch, Wnt and FGF pathways, and it is widely accepted that intracellular negative-feedback loops regulate oscillatory gene expression. However, an open question in the field is how intracellular oscillations are coordinated, in the form of spatiotemporal waves of expression, across the PSM. In this study, we provide a potential mechanism for this process. We show at the mRNA level that the Notch1 receptor and Delta-like 1 (Dll1) ligand vary dynamically across the PSM of both chick and mouse. Remarkably, we also demonstrate similar dynamics at the protein level; hence, the pathway components that mediate intercellular coupling themselves exhibit oscillatory dynamics. Moreover, we quantify the dynamic expression patterns of Dll1 and Notch1, and show they are highly correlated with the expression patterns of two known clock components [Lfng mRNA and the activated form of the Notch receptor (cleaved Notch intracellular domain, NICD)]. Lastly, we show that Notch1 is a target of Notch signalling, whereas Dll1 is Wnt regulated. Regulation of Dll1 and Notch1 expression thus links the activity of Wnt and Notch, the two main signalling pathways driving the clock.


Subject(s)
Biological Clocks/physiology , Gene Expression Regulation, Developmental/physiology , Intercellular Signaling Peptides and Proteins/metabolism , Mesoderm/embryology , Receptor, Notch1/metabolism , Signal Transduction/physiology , Somites/embryology , Algorithms , Animals , Blotting, Western , Calcium-Binding Proteins , Chick Embryo , Glycosyltransferases/metabolism , Image Processing, Computer-Assisted , Immunohistochemistry , In Situ Hybridization , In Situ Hybridization, Fluorescence , Mesoderm/metabolism , Mice , Real-Time Polymerase Chain Reaction , Receptors, Notch/metabolism
5.
Cell Rep ; 7(5): 1353-1361, 2014 Jun 12.
Article in English | MEDLINE | ID: mdl-24882006

ABSTRACT

5-Methylcytosine (5mC) is an epigenetic modification involved in regulation of gene activity during differentiation. Tet dioxygenases oxidize 5mC to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Both 5fC and 5caC can be excised from DNA by thymine-DNA glycosylase (TDG) followed by regeneration of unmodified cytosine via the base excision repair pathway. Despite evidence that this mechanism is operative in embryonic stem cells, the role of TDG-dependent demethylation in differentiation and development is currently unclear. Here, we demonstrate that widespread oxidation of 5hmC to 5caC occurs in postimplantation mouse embryos. We show that 5fC and 5caC are transiently accumulated during lineage specification of neural stem cells (NSCs) in culture and in vivo. Moreover, 5caC is enriched at the cell-type-specific promoters during differentiation of NSCs, and TDG knockdown leads to increased 5fC/5caC levels in differentiating NSCs. Our data suggest that active demethylation contributes to epigenetic reprogramming determining lineage specification in embryonic brain.


Subject(s)
Cell Lineage , Cytosine/analogs & derivatives , DNA Methylation , Neural Stem Cells/metabolism , Animals , Cells, Cultured , Cytosine/metabolism , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Gene Expression Regulation, Developmental , Humans , Neural Stem Cells/cytology , Neurogenesis , Thymine DNA Glycosylase/metabolism
6.
Development ; 141(12): 2429-40, 2014 Jun.
Article in English | MEDLINE | ID: mdl-24917499

ABSTRACT

A common feature of development in most vertebrate models is the early segregation of the germ line from the soma. For example, in Xenopus and zebrafish embryos primordial germ cells (PGCs) are specified by germ plasm that is inherited from the egg; in mice, Blimp1 expression in the epiblast mediates the commitment of cells to the germ line. How these disparate mechanisms of PGC specification evolved is unknown. Here, in order to identify the ancestral mechanism of PGC specification in vertebrates, we studied PGC specification in embryos from the axolotl (Mexican salamander), a model for the tetrapod ancestor. In the axolotl, PGCs develop within mesoderm, and classic studies have reported their induction from primitive ectoderm (animal cap). We used an axolotl animal cap system to demonstrate that signalling through FGF and BMP4 induces PGCs. The role of FGF was then confirmed in vivo. We also showed PGC induction by Brachyury, in the presence of BMP4. These conditions induced pluripotent mesodermal precursors that give rise to a variety of somatic cell types, in addition to PGCs. Irreversible restriction of the germ line did not occur until the mid-tailbud stage, days after the somatic germ layers are established. Before this, germline potential was maintained by MAP kinase signalling. We propose that this stochastic mechanism of PGC specification, from mesodermal precursors, is conserved in vertebrates.


Subject(s)
Ambystoma mexicanum/embryology , Gene Expression Regulation, Developmental , Germ Cells/cytology , Mesoderm/cytology , Animals , Bone Morphogenetic Protein 4/metabolism , Cell Differentiation , Fetal Proteins/metabolism , Fibroblast Growth Factors/metabolism , In Situ Hybridization , MAP Kinase Signaling System , Pluripotent Stem Cells/cytology , Signal Transduction , Stochastic Processes , T-Box Domain Proteins/metabolism , Xenopus
7.
Nucleus ; 3(6): 565-9, 2012.
Article in English | MEDLINE | ID: mdl-23138778

ABSTRACT

5-Methylcytosine (5-mC) is an epigenetic modification associated with gene repression. Recent studies demonstrated that 5-mC can be enzymatically oxidised into 5-hydroxymethylcytosine and further into 5-formylcytosine (5-fC) and 5-carboxylcytsine (5-caC). 5-caC has been found in embryonic stem cells and in mouse pre-implantation embryos but no detectable levels of this modification have been reported for somatic tissues to date. Whereas it has been suggested that 5-caC can serve as an intermediate in the process of active demethylation, the function of this form of modified cytosine remains obscure. Here we show that 5-caC is immunochemically detectable in somatic cells of axolotl ovary. We demonstrate that both 5-hmC and 5-caC are localized to the euchromatin in the nuclei of axolotl follicular cells with similar patterns of spatial distribution. Our results suggest that 5-carboxylcytosine may play a distinct functional role in certain biological contexts.


Subject(s)
Cell Nucleus/metabolism , Cytosine/analogs & derivatives , Euchromatin/metabolism , Ovary/metabolism , 5-Methylcytosine/analogs & derivatives , Ambystoma mexicanum , Animals , Cells, Cultured , Cytosine/metabolism , DNA Methylation , Embryonic Stem Cells/cytology , Embryonic Stem Cells/metabolism , Female , Mice , Microscopy, Confocal , Ovary/pathology
8.
BMC Dev Biol ; 10: 24, 2010 Feb 25.
Article in English | MEDLINE | ID: mdl-20184730

ABSTRACT

BACKGROUND: Somitogenesis is the earliest sign of segmentation in the developing vertebrate embryo. This process starts very early, soon after gastrulation has initiated and proceeds in an anterior-to-posterior direction during body axis elongation. It is widely accepted that somitogenesis is controlled by a molecular oscillator with the same periodicity as somite formation. This periodic mechanism is repeated a specific number of times until the embryo acquires a defined specie-specific final number of somites at the end of the process of axis elongation. This final number of somites varies widely between vertebrate species. How termination of the process of somitogenesis is determined is still unknown. RESULTS: Here we show that during development there is an imbalance between the speed of somite formation and growth of the presomitic mesoderm (PSM)/tail bud. This decrease in the PSM size of the chick embryo is not due to an acceleration of the speed of somite formation because it remains constant until the last stages of somitogenesis, when it slows down. When the chick embryo reaches its final number of somites at stage HH 24-25 there is still some remaining unsegmented PSM in which expression of components of the somitogenesis oscillator is no longer dynamic. Finally, we identify a change in expression of retinoic acid regulating factors in the tail bud at late stages of somitogenesis, such that in the chick embryo there is a pronounced onset of Raldh2 expression while in the mouse embryo the expression of the RA inhibitor Cyp26A1 is downregulated. CONCLUSIONS: Our results show that the chick somitogenesis oscillator is arrested before all paraxial mesoderm is segmented into somites. In addition, endogenous retinoic acid is probably also involved in the termination of the process of segmentation, and in tail growth in general.


Subject(s)
Chick Embryo , Mesoderm/metabolism , Somites/embryology , Animals , Mice , Retinal Dehydrogenase/metabolism , Tail/embryology , Tretinoin/metabolism
9.
Dev Dyn ; 238(12): 3043-3055, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19882724

ABSTRACT

Somites are formed progressively from the presomitic mesoderm (PSM) in a highly regulated process according to a strict periodicity driven by an oscillatory mechanism. The Notch and Wnt pathways are key components in the regulation of this somitic oscillator and data from Xenopus and zebrafish embryos indicate that the Notch-downstream target Nrarp participates in the regulation of both activities. We have analyzed Nrarp/nrarp-a expression in the PSM of chick, mouse and zebrafish embryos, and we show that it cycles in synchrony with other Notch regulated cyclic genes. In the mouse its transcription is both Wnt- and Notch-dependent, whereas in the chick and fish embryo it is simply Notch-dependent. Despite oscillating mRNA levels, Nrarp protein does not oscillate in the PSM. Finally, neither gain nor loss of Nrarp function interferes with the normal expression of Notch-related cyclic genes.


Subject(s)
Biological Clocks/physiology , Proteins/genetics , Proteins/metabolism , Somites/metabolism , Animals , Biological Clocks/genetics , Chick Embryo , Embryo, Mammalian , Embryo, Nonmammalian , Female , Gene Expression Regulation, Developmental , Intracellular Signaling Peptides and Proteins , Mice , Models, Biological , Periodicity , Pregnancy , RNA, Messenger/metabolism , Receptors, Notch/metabolism , Receptors, Notch/physiology , Somites/physiology , Zebrafish/embryology
10.
PLoS Genet ; 5(9): e1000662, 2009 Sep.
Article in English | MEDLINE | ID: mdl-19779553

ABSTRACT

Segmentation of the vertebrate body axis is initiated through somitogenesis, whereby epithelial somites bud off in pairs periodically from the rostral end of the unsegmented presomitic mesoderm (PSM). The periodicity of somitogenesis is governed by a molecular oscillator that drives periodic waves of clock gene expression caudo-rostrally through the PSM with a periodicity that matches somite formation. To date the clock genes comprise components of the Notch, Wnt, and FGF pathways. The literature contains controversial reports as to the absolute role(s) of Notch signalling during the process of somite formation. Recent data in the zebrafish have suggested that the only role of Notch signalling is to synchronise clock gene oscillations across the PSM and that somite formation can continue in the absence of Notch activity. However, it is not clear in the mouse if an FGF/Wnt-based oscillator is sufficient to generate segmented structures, such as the somites, in the absence of all Notch activity. We have investigated the requirement for Notch signalling in the mouse somitogenesis clock by analysing embryos carrying a mutation in different components of the Notch pathway, such as Lunatic fringe (Lfng), Hes7, Rbpj, and presenilin1/presenilin2 (Psen1/Psen2), and by pharmacological blocking of the Notch pathway. In contrast to the fish studies, we show that mouse embryos lacking all Notch activity do not show oscillatory activity, as evidenced by the absence of waves of clock gene expression across the PSM, and they do not develop somites. We propose that, at least in the mouse embryo, Notch activity is absolutely essential for the formation of a segmented body axis.


Subject(s)
Biological Clocks , Organogenesis , Receptors, Notch/metabolism , Somites/embryology , Somites/metabolism , Animals , Basic Helix-Loop-Helix Transcription Factors/genetics , Basic Helix-Loop-Helix Transcription Factors/metabolism , Body Patterning/genetics , Embryo, Mammalian/metabolism , Fibroblast Growth Factors/genetics , Fibroblast Growth Factors/metabolism , Gene Expression Regulation, Developmental , Glycosyltransferases/deficiency , Glycosyltransferases/genetics , Glycosyltransferases/metabolism , Mice , Mutation/genetics , Presenilin-1/genetics , Presenilin-1/metabolism , Presenilin-2/genetics , Presenilin-2/metabolism , Wnt Proteins/metabolism
11.
Int J Dev Biol ; 53(1): 163-8, 2009.
Article in English | MEDLINE | ID: mdl-19123139

ABSTRACT

Src family tyrosine kinases (SFKs) play important roles in cell morphology, differentiation, motility and proliferation. Elevated expression and/or specific activity of Src kinases are characteristic for several types of human cancer. However, little information is available about the role and spatio-temporal expression of SFKs in early embryonic development. In this study we characterized, in Xenopus laevis, the expression patterns of five SFK genes src, fyn, yes, lyn and laloo as well as of the csk gene, a negative regulator of SFKs, using RT-qPCR and in situ hybridisation. We found that transcripts of all SFKs and csk were already detectable in one-cell embryos and their levels similarly oscillated during subsequent development. First, after stage 8, the levels of SFK and csk mRNAs began to decrease, reached a minimum between stages 10 and 28 and increased again. In the later stages (33-45), the levels of fyn, yes and csk mRNAs returned to approximately maternal ones, whereas the src, laloo and lyn mRNA transcripts exceeded, up to about 3.5-6-fold, their maternal levels. In situ hybridisation analysis located the SFK and csk transcripts in the animal hemisphere of Xenopus embryos. Subsequent gastrula stages showed signals in ectodermal cells, mid-neurula stage embryos at neural folds, and the tailbud stages showed strong signals in the brain and neural tube. RT-qPCR concentration profiling along the animal-vegetal axis proved in blastula and gastrula the preferential localisation of yes, src, lyn and csk transcripts towards the animal pole in a gradient-like manner. In contrast, laloo and fyn displayed a vegetal pole preference.


Subject(s)
Gene Expression Regulation, Developmental/genetics , Xenopus laevis/embryology , Xenopus laevis/genetics , src-Family Kinases/genetics , Animals , Embryo, Nonmammalian/embryology , Embryo, Nonmammalian/enzymology , Gene Expression Profiling , In Situ Hybridization , RNA, Messenger/genetics
12.
Dev Dyn ; 235(3): 754-8, 2006 Mar.
Article in English | MEDLINE | ID: mdl-16397894

ABSTRACT

Cell differentiation depends mainly on specific mRNA expression. To quantify the expression of a particular gene, the normalisation with respect to the expression of a reference gene is carried out. This is based on the assumption that the expression of the reference gene is constant during development, in different cells or tissues or after treatment. Xenopus laevis studies have frequently used eEF-1 alpha, GAPDH, ODC, L8, and H4 as reference genes. The aim of this work was to examine, by real-time RT-PCR, the expression profiles of the above-mentioned five reference genes during early development of X. laevis. It is shown that their expression profiles vary greatly during X. laevis development. The developmental changes of mRNA expression can thus significantly compromise the relative mRNA quantification based on these reference genes, when different developmental stages are to be compared. The normalisation against total RNA is recommended instead.


Subject(s)
Gene Expression Profiling , Genes, Developmental , Xenopus laevis/embryology , Xenopus laevis/genetics , Animals , Biomarkers/analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...