Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Phys Rev Lett ; 119(24): 245701, 2017 Dec 15.
Article in English | MEDLINE | ID: mdl-29286747

ABSTRACT

Despite the simplicity of its molecular unit, water is a challenging system because of its uniquely rich polymorphism and predicted but yet unconfirmed features. Introducing a novel space of generalized coordinates that capture changes in the topology of the interatomic network, we are able to systematically track transitions among liquid, amorphous, and crystalline forms throughout the whole phase diagram of water, including the nucleation of crystals above and below the melting point. Our approach, based on molecular dynamics and enhanced sampling or free energy calculation techniques, is not specific to water and could be applied to very different structural phase transitions, paving the way towards the prediction of kinetic routes connecting polymorphic structures in a range of materials.

2.
J Phys Condens Matter ; 27(45): 455104, 2015 Nov 18.
Article in English | MEDLINE | ID: mdl-26499978

ABSTRACT

Using high energy x-ray diffraction, the structure factors of glassy and molten B2O3 were measured with high signal-to-noise, up to a temperature of T = 1710(20) K. The observed systematic changes with T are shown to be consistent with the dissolution of hexagonal [B3O6] boroxol rings, which are abundant in the glass, whilst the high-T (>~1500 K) liquid can be more closely described as a random network structure based on [BO3] triangular building blocks. We therefore argue that diffraction data are in fact qualitatively sensitive to the presence of small rings, and support the existence of a continuous structural transition in molten B2O3, for which the temperature evolution of the 808 cm−1 Raman scattering band (boroxol breathing mode) has long stood as the most emphatic evidence. Our conclusions are supported by both first-principles and polarizable ion model molecular dynamics simulations which are capable of giving good account of the experimental data, so long as steps are taken to ensure a ring fraction similar to that expected from Raman spectroscopy. The mean thermal expansion of the B-O bond has been measured directly to be αBO = 3.7(2) × 10−6 K−1, which accounts for a few percent of the bulk expansion just above the glass transition temperature, but accounts for greater than one third of the bulk expansion at temperatures in excess of 1673 K.

3.
Phys Rev Lett ; 101(3): 035702, 2008 Jul 18.
Article in English | MEDLINE | ID: mdl-18764264

ABSTRACT

We study high-pressure polyamorphism of B2O3 glass using x-ray diffraction up to 10 GPa in the 300-700 K temperature range, in situ volumetric measurements up to 9 GPa, and first-principles simulations. Under pressure, glass undergoes two-stage transformations including a gradual increase of the first B-O (O-B) coordination numbers above 5 GPa. The fraction of boron atoms in the fourfold-coordinated state at P<10 GPa is smaller than was assumed from inelastic x-ray scattering spectroscopy data, but is considerably larger than was previously suggested by the classical molecular dynamics simulations. The observed transformations under both compression and decompression are broad in hydrostatic conditions. On the basis of ab initio results, we also predict one more transformation to a superdense phase, in which B atoms are sixfold coordinated.

SELECTION OF CITATIONS
SEARCH DETAIL
...