Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
RSC Adv ; 10(20): 11755-11765, 2020 Mar 19.
Article in English | MEDLINE | ID: mdl-35496632

ABSTRACT

The macrocyclic ligand calix[4]arene (L1) and its sulphur-containing analogue thia[4]calixarene (L2) are promising precursors for functional molecular materials as they offer rational functionalization with various organic groups. Here, we present the first example of lanthanide-based coordination polymers built from the macrocyclic thiacalix[4]arene backbone bearing four carboxylic moieties, namely, ligand H4L3. The combination of H4L3 with the Tb3+ and Dy3+ cations led to the formation of 1D ladder-type coordination polymers with the formula [LnIIIHL3DMF3]·(DMF) (where DMF = dimethylformamide and Ln = Tb or Dy, denoted as HL3-Tb and HL3-Dy), which resulted from the coordination of the lanthanide cations with the partially deprotonated ligand HL33- that behaved as a T-shape connector. The coordination sphere around the metal was completed by the coordinated DMF solvent molecules. By combining both Tb3+ and Dy3+ cations, isostructural heterobimetallic solid solutions HL3-Tb1- x Dy x were also prepared. HL3-Tb and HL3-Dy showed visible light photoluminescence originating from the f-f electronic transitions of pale green emissive Tb3+ and pale yellow emissive Dy3+ with efficient sensitization by the functionalized thia[4]calixarene ligand HL3. In the HL3-Tb1- x Dy x solid solutions, the Tb/Dy ratio governed both the emission colour as well as the emission quantum yield, which reached even 28% at room temperature for HL3-Tb. Moreover, HL3-Dy exhibited a slow magnetic relaxation effect related to the magnetic anisotropy of the dodecahedral Dy3+ complexes, which were well isolated in the crystal lattice by expanded organic spacers.

2.
Dalton Trans ; 43(1): 158-65, 2014 Jan 07.
Article in English | MEDLINE | ID: mdl-24132039

ABSTRACT

The combination of the same organic tecton 1, a meta-pyridyl appended tetramercaptotetrathiacalix[4]arene in 1,3-alternate conformation offering four pyridyl units and eight thioether groups, with three silver salts AgX (X = BF4(-), NO3(-) and SbF6(-)) leads, under identical conditions (concentration, temperature and solvent system), to the formation of different silver coordination networks. Both the connectivity and the dimensionality of the three silver coordination networks depend on the nature of the anion used as a counter ion. Whereas the weakly coordinating BF4(-) anion does not participate in the formation of the non-tubular 1D coordination network, the coordinating NO3(-) anion is bound to the metal cation and this leads to the formation of a tubular 1D silver coordination network. In both cases, the eight S atoms of the tecton 1 do not take part in the binding of the cation. In marked contrast, when the SbF6(-) anion is used as a counter ion, the organic tecton 1 behaves as a tetrakismonodentate through its four meta-pyridyl moieties and as a bischelating unit of the SCCS type leading thus to the formation of a porous 3D diamondoid-type network.

3.
Inorg Chem ; 52(12): 6776-8, 2013 Jun 17.
Article in English | MEDLINE | ID: mdl-23742733

ABSTRACT

Combinations of tetramercaptotetrathiacalix[4]arene pyridyl-appended positional isomers with HgCl2 lead to the formation of neutral coordination networks with their dimensionality imposed by the position of the N atom on the pyridyl group.

4.
Dalton Trans ; 42(27): 9946-53, 2013 Jul 21.
Article in English | MEDLINE | ID: mdl-23698328

ABSTRACT

Three p-H-thiacalix[4]arene pyridyl appended coordinating tectons (2-4) in a 1,3-alternate conformation have been prepared and structurally characterised in the solid state. These compounds are positional isomers differing only by the position of the nitrogen atom on the pyridyl ring. Their combinations with HgCl2 lead to the formation of 1- and 2-D neutral mercury coordination networks. Whereas for tecton 2 (ortho isomer) a 2D architecture resulting from the bridging of consecutive tectons by the mononuclear HgCl2 unit is obtained, for tecton 3 (meta isomer) again a 2D network is formed. However, in that case, the interconnection of consecutive organic tectons 3 takes place through a binuclear Hg2Cl4 species. Finally, in the case of tecton 4 (para position), a 1D ribbon type double chain arrangement resulting from the bridging of consecutive tectons by trinuclear Hg3Cl6 units followed by the interconnection of two chains through the fusion of the trinuclear centres into a hexanuclear node is observed.


Subject(s)
Mercury/chemistry , Organometallic Compounds/chemical synthesis , Phenols/chemistry , Sulfides/chemistry , Models, Molecular , Molecular Structure , Organometallic Compounds/chemistry , Stereoisomerism
5.
Dalton Trans ; 42(1): 116-26, 2013 Jan 07.
Article in English | MEDLINE | ID: mdl-23073357

ABSTRACT

Three new organic tectons (2­4) based on the p-tert-butylthiacalix[4]arene backbone, blocked in the 1,3-alternate conformation, bearing four pyridyl coordinating moieties, have been synthesised and characterised in the solid state. The ligands are positional isomers and differ by the position of the N atom on the pyridyl unit (ortho for 2, meta for 3 and para for 4). Their combination with the Ag+ cation leads, reproducibly, to the formation of 2- and 3-D infinite silver coordination networks. Independent of the nature of the anion, the combination of 2 offering four (N,S) type chelates with the Ag+ cation affords an unprecedented diamond type 3D network. Both 3 and 4, behaving as tetrakis monodentate ligands, lead to the formation of 2-D architectures.

SELECTION OF CITATIONS
SEARCH DETAIL
...