Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
Add more filters










Publication year range
1.
ACS Mater Au ; 4(1): 74-81, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38221925

ABSTRACT

Transition metal oxides are characterized by an acute structure and composition dependent electrocatalytic activity toward the oxygen evolution (OER) and oxygen reduction (ORR) reactions. For instance, Mn containing oxides are among the most active ORR catalysts, while Ni based compounds tend to show high activity toward the OER in alkaline solutions. In this study, we show that incorporation of Ni into α-MnO2, by adding Ni precursor into the Mn-containing hydrothermal solution, can generate distinctive sites with different electronic configurations and contrasting electrocatalytic activity. The structure and composition of the Ni modified hollandite α-MnO2 phase were investigated by X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (TEM-EDX), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photoelectron spectroscopy (XPS). Our analysis suggests that Mn replacement by Ni into the α-MnO2 lattice (site A) occurs up to approximately 5% of the total Mn content, while further increasing Ni content promotes the nucleation of separate Ni phases (site B). XAS and XRD show that the introduction of sites A and B have a negligible effect on the overall Mn oxidation state and bonding characteristics, while very subtle changes in the XPS spectra appear to suggest changes in the electronic configuration upon Ni incorporation into the α-MnO2 lattice. On the other hand, changes in the electronic structure promoted by site A have a significant impact in the pseudocapacitive responses obtained by cyclic voltammetry in KOH solution at pH 13, revealing the appearance of Mn 3d orbitals at the energy (potential) range relevant to the ORR. The evolution of Mn 3d upon Ni replacement significantly increases the catalytic activity of α-MnO2 toward the ORR. Interestingly, the formation of segregated Ni phases (site B) leads to a decrease in the ORR activity while increasing the OER rate.

2.
Nanomaterials (Basel) ; 13(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38133009

ABSTRACT

Over the last decade, research in organic-inorganic lead halide perovskite solar cells (PSCs) has gathered unprecedented momentum, putting the technology on the brink of full-scale commercialization. A wide range of strategies have been implemented for enhancing the power conversion efficiency of devices and modules, as well as improving stability toward high levels of irradiation, temperature, and humidity. Another key element in the path to commercialization is the scalability of device manufacturing, which requires large-scale deposition of conformal layers without compromising the delicate structure of the perovskite film. In this context, atomic layer deposition (ALD) tools excel in depositing high-quality conformal films with precise control of film composition and thickness over large areas at relatively low processing temperatures. In this commentary, we will briefly outline recent progress in PSC technology enabled by ALD tools, focusing on layers deposited above the absorber layer. These interlayers include charge transport layers, passivation layers, buffer layers, and encapsulation techniques. Additionally, we will discuss some of the challenges and potential avenues for research in PSC technology underpinned by ALD tools.

3.
Chem Sci ; 13(37): 11252-11259, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320475

ABSTRACT

Point defects (PDs) play a key role in the properties of semiconductor photoelectrodes, from doping density to carrier mobility and lifetime. Although this issue has been extensively investigated in the context of photovoltaic absorbers, the role of PDs in photoelectrodes for solar fuels remains poorly understood. In perovskite oxides such as LaFeO3 (LFO), PDs can be tuned by changing the cation ratio, cation substitution and oxygen content. In this paper, we report the first study on the impact of bulk and surface PDs on the photoelectrochemical properties of LFO thin films. We independently varied the La : Fe ratio, within 10% of the stoichiometric value, in the bulk and at the surface by tuning the precursor composition as well as selective acid etching. The structure and composition of thin films deposited by sol-gel methods were investigated by SEM-EDX, ICP-OES, XPS and XRD. Our analysis shows a correlation between the binding energies of Fe 2p3/2 and O 1s, establishing a link between the oxidation state of Fe and the covalency of the Fe-O bond. Electrochemical studies reveal the emergence of electronic states close to the valence band edge with decreasing bulk Fe content. DFT calculations confirm that Fe vacancies generate states located near the valence band, which act as hole-traps and recombination sites under illumination. Dynamic photocurrent responses associated with oxygen reduction and hydrogen evolution show that the stoichiometric La : Fe ratio provides the most photoactive oxide; however, this can only be achieved by independently tuning the bulk and surface compositions of the oxide.

8.
Faraday Discuss ; 239(0): 70-84, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35822567

ABSTRACT

Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics, however, the open-circuit voltage (VOC) deficit of CZTSSe prevents the device performance from exceeding 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is the doping and alloying of the material to suppress certain defects and improve crystallization, such as with germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here, we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, which are subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation, we demonstrate structural changes with a negligible change in the energy bandgap but substantial increases in the crystallinity and grain morphology, which are associated with a Ge-Se growth mechanism, and gains in both the VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape, which we attribute to a reduction in the segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.

9.
ACS Appl Energy Mater ; 5(4): 3933-3940, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35497685

ABSTRACT

The sub-bandgap levels associated with defect states in Cu2ZnSnS4 (CZTS) thin films are investigated by correlating the temperature dependence of the absorber photoluminescence (PL) with the device admittance spectroscopy. CZTS thin films are prepared by thermolysis of molecular precursors incorporating chloride salts of the cations and thiourea. Na and Sb are introduced as dopants in the precursor layers to assess their impact on Cu/Zn and Sn site disorder, respectively. Systematic analysis of PL spectra as a function of excitation power and temperature show that radiative recombination is dominated by quasi-donor-acceptor pairs (QDAP) with a maximum between 1.03 and 1.18 eV. It is noteworthy that Sb doping leads to a transition from localized to delocalized QDAP. The activation energies obtained associated with QDAP emission closely correlate with the activation energies of the admittance responses in a temperature range between 150 K and room temperature in films with or without added dopants. Admittance data of CZTS films with no added dopants also have a strong contribution from a deeper state associated with Sn disorder. The ensemble of PL and admittance data, in addition to energy-filtered photoemission of electron microscopy (EF-PEEM), shows a detailed picture of the distribution of sub-bandgap states in CZTS and the impact of doping on their energetics and device performance.

10.
J Am Chem Soc ; 144(10): 4439-4447, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35254811

ABSTRACT

The atomistic rationalization of the activity of transition metal oxides toward oxygen electrocatalysis is one of the most complex challenges in the field of electrochemical energy conversion. Transition metal oxides exhibit a wide range of structural and electronic properties, which are acutely dependent on composition and crystal structure. So far, identifying one or several properties of transition metal oxides as descriptors for oxygen electrocatalysis remains elusive. In this work, we performed a detailed experimental and computational study of LaMnxNi1-xO3 perovskite nanostructures, establishing an unprecedented correlation between electrocatalytic activity and orbital composition. The composition and structure of the single-phase rhombohedral oxide nanostructures are characterized by a variety of techniques, including X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. Systematic electrochemical analysis of pseudocapacitive responses in the potential region relevant to oxygen electrocatalysis shows the evolution of Mn and Ni d-orbitals as a function of the perovskite composition. We rationalize these observations on the basis of electronic structure calculations employing DFT with HSE06 hybrid functional. Our analysis clearly shows a linear correlation between the OER kinetics and the integrated density of states (DOS) associated with Ni and Mn 3d states in the energy range relevant to operational conditions. In contrast, the ORR kinetics exhibits a second-order reaction with respect to the electron density in Mn and Ni 3d states. For the first time, our study identifies the relevant DOS dominating both reactions and the importance of understanding orbital occupancy under operational conditions.

11.
ACS Appl Mater Interfaces ; 12(28): 31486-31495, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32539332

ABSTRACT

The effects of alkaline-earth metal cation (AMC; Mg2+, Ca2+, Sr2+, and Ba2+) substitution on the photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance, and electrochemical impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films with a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a scaling factor between these two photoemission peaks, unveiling key correlation between Fe oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance increases (increase in dopant level) and the apparent flat-band potential shifts toward more positive potentials. This behavior is consistent with the change in the valence band photoemission edge. In addition, capacitance data of cation-substituted films show the emergence of deeper states centered around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses toward the hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency close to 20% in oxygen saturated solutions. We rationalize the photoresponses of the LFO films in terms of the effect sub-bandgap states on majority carrier mobility, charge transfer, and recombination kinetics.

12.
iScience ; 9: 36-46, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30384132

ABSTRACT

The performance of Cu2ZnSn(S,Se)4 thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (VOC) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale shunting paths in solution-processed CZTSSe films, which limit the VOC of cells to approximately 400 mV. These studies unveil areas of local effective work function (LEWF) narrowly distributed around 4.9 eV, whereas other portions show hotspots with LEWF as low as 4.2 eV. Localized valence band spectra and density functional theory calculations allow rationalizing the LEWF maps in terms of the CZTSSe effective work function broadened by potential energy fluctuations and nanoscale Sn(S,Se) phases.

13.
ChemElectroChem ; 5(14): 1922-1927, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-30263882

ABSTRACT

The electrocatalytic activity of La1-x Ba x MnO3 nanoparticles towards the oxygen reduction reaction (ORR) is investigated as a function of the A-site composition. Phase-pure oxide nanoparticles with a diameter in the range of 40 to 70 nm were prepared by using an ionic liquid route and deposited onto mesoporous carbon films. The structure and surface composition of the nanoparticles are probed by XRD, TEM, EDX, and XPS. Electrochemical studies carried out under alkaline conditions show a strong correlation between the activity of La1-x Ba x MnO3 and the effective number of reducible Mn sites at the catalysts layer. Our analysis demonstrates that, beyond controlling particle size and surface elemental segregation, understanding and controlling Mn coordination at the first atomic layer is crucial for increasing the performance of these materials.

14.
J Phys Chem Lett ; 9(4): 895-901, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29389137

ABSTRACT

Organic cation rotation in hybrid organic-inorganic lead halide perovskites has previously been associated with low charge recombination rates and (anti)ferroelectric domain formation. Two-dimensional infrared spectroscopy (2DIR) was used to directly measure 470 ± 50 fs and 2.8 ± 0.5 ps time constants associated with the reorientation of formamidinium cations (FA+, NH2CHNH2+) in formamidinium lead iodide perovskite thin films. Molecular dynamics simulations reveal the FA+ agitates about an equilibrium position, with NH2 groups pointing at opposite faces of the inorganic lattice cube, and undergoes 90° flips on picosecond time scales. Time-resolved infrared measurements revealed a prominent vibrational transient feature arising from a vibrational Stark shift: photogenerated charge carriers increase the internal electric field of perovskite thin films, perturbing the FA+ antisymmetric stretching vibrational potential, resulting in an observed 5 cm-1 shift. Our 2DIR results provide the first direct measurement of FA+ rotation inside thin perovskite films, and cast significant doubt on the presence of long-lived (anti)ferroelectric domains, which the observed low charge recombination rates have been attributed to.

15.
Nat Commun ; 8(1): 971, 2017 10 17.
Article in English | MEDLINE | ID: mdl-29042564

ABSTRACT

The real-time visualization of stochastic nucleation events at electrode surfaces is one of the most complex challenges in electrochemical phase formation. The early stages of metal deposition on foreign substrates are characterized by a highly dynamic process in which nanoparticles nucleate and dissolve prior to reaching a critical size for deposition and growth. Here, high-speed non-contact lateral molecular force microscopy employing vertically oriented probes is utilized to explore the evolution of hydration layers at electrode surfaces with the unprecedented spatiotemporal resolution, and extremely low probe-surface interaction forces required to avoid disruption or shielding the critical nucleus formation. To the best of our knowledge, stochastic nucleation events of nanoscale copper deposits are visualized in real time for the first time and a highly dynamic topographic environment prior to the formation of critical nuclei is unveiled, featuring formation/re-dissolution of nuclei, two-dimensional aggregation and nuclei growth.Electrochemical deposition is important for industrial processes however, tracking the early stages of metallic phase nucleation is challenging. Here, the authors visualize the birth and growth of metal nuclei at electrode surfaces in real time via high-speed non-contact lateral molecular force microscopy.

16.
ACS Appl Mater Interfaces ; 9(3): 2301-2308, 2017 Jan 25.
Article in English | MEDLINE | ID: mdl-28032981

ABSTRACT

A single molecular precursor solution is described for the deposition of CuIn(S,Se)2 (CIS) film onto Mo-coated glass substrates by spin coating, followed by annealing in Se atmosphere. Characterization of the films by X-ray diffraction, Raman spectroscopy and scanning electron microscopy demonstrates the formation of a highly homogeneous and compact 1.1 µm thick CIS layer, with a MoSe2 under-layer. Atomic force microscopy reveals the presence of spherical grains between 400 and 450 nm, featuring surface corrugation in the range of 30 nm. Film composition is found to be in close agreement with that of the precursor solution. Diffuse reflectance spectroscopy shows a direct band gap (Eg) of 1.36 eV. Intensity and temperature dependence photoluminescence spectra show characteristic features associated with a donor-acceptor pair recombination mechanism, featuring activation energy of 34 meV. Over 85 solar cell devices with the configuration Mo/CIS/CdS/i-ZnO/Al:ZnO/Ni-Al and an total area of 0.5 cm2 were fabricated and tested. The champion cell shows a power efficiency of 3.4% with an open circuit voltage of 521 mV and short circuit current of 14 mA/cm2 under AM 1.5 illumination and an external quantum efficiency above 60%. Overall variation in each of solar cell parameters remains below 10% of the average value, demonstrating the remarkable homogeneity of this solution processing method. To understand the limitation of devices, the dependence of the open-circuit voltage and impedance spectra upon temperature were analyzed. The data reveal that the CuIn(S,Se)2/CdS interface is the main recombination pathway with an activation energy of 0.79 eV as well as the presence of two "bulk" defect states with activation energies of 37 and 122 meV. We also estimated that the MoSe2 under-layer generates back contact barrier of 195 meV.

17.
Water Res ; 109: 46-53, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-27866103

ABSTRACT

Urine is an excellent fuel for electricity generation in Microbial Fuel Cells (MFCs), especially with practical implementations in mind. Moreover, urine has a high content in nutrients which can be easily recovered. Struvite (MgNH4PO4·6H2O) crystals naturally precipitate in urine, but this reaction can be enhanced by the introduction of additional magnesium. In this work, the effect of magnesium additives on the power output of the MFCs and on the catholyte generation is evaluated. Several magnesium sources including MgCl2, artificial sea water and a commercially available sea salts mixture for seawater preparation (SeaMix) were mixed with real fresh human urine in order to enhance struvite precipitation. The supernatant of each mixture was tested as a feedstock for the MFCs and it was evaluated in terms of power output and catholyte generation. The commercial SeaMix showed the best performance in terms of struvite precipitation, increasing the amount of struvite in the solid collected from 21% to 94%. Moreover, the SeaMix increased the maximum power performance of the MFCs by over 10% and it also changed the properties of the catholyte collected by increasing the pH, conductivity and the concentration of chloride ions. These results demonstrate that the addition of sea-salts to real urine is beneficial for both struvite recovery and electricity generation in MFCs.


Subject(s)
Salts , Struvite , Urine/chemistry , Bioelectric Energy Sources , Electricity , Humans , Magnesium , Magnesium Compounds/chemistry , Phosphates/chemistry
18.
Biomacromolecules ; 17(11): 3485-3492, 2016 11 14.
Article in English | MEDLINE | ID: mdl-27650815

ABSTRACT

The modification of protein surfaces employing cationic and anionic species enables the assembly of these biomaterials into highly sophisticated hierarchical structures. Such modifications can allow bioconjugates to retain or amplify their functionalities under conditions in which their native structure would be severely compromised. In this work, we assess the effect of this type of bioconjugation on the redox properties of two model heme proteins, that is, cytochrome c (CytC) and myoglobin (Mb). In particular, the work focuses on the sequential modification by 3-dimethylamino propylamine (DMAPA) and 4-nonylphenyl 3-sulfopropyl ether (S1) anionic surfactant. Bioconjugation with DMAPA and S1 are the initial steps in the generation of pure liquid proteins, which remain active in the absence of water and up to temperatures above 150 °C. Thin-layer spectroelectrochemistry reveals that DMAPA cationization leads to a distribution of bioconjugate structures featuring reduction potentials shifted up to 380 mV more negative than the native proteins. Analysis based on circular dichroism, MALDI-TOF mass spectrometry, and zeta potential measurements suggest that the shift in the reduction potentials are not linked to protein denaturation, but to changes in the spin state of the heme. These alterations of the spin states originate from subtle structural changes induced by DMAPA attachment. Interestingly, electrostatic coupling of anionic surfactant S1 shifts the reduction potential closer to that of the native protein, demonstrating that the modifications of the heme electronic configuration are linked to surface charges.


Subject(s)
Cytochromes c/chemistry , Heme/chemistry , Myoglobin/chemistry , Anions/chemistry , Arsenicals/chemistry , Circular Dichroism , Oxidation-Reduction , Protein Conformation/drug effects , Protein Denaturation , Static Electricity , Temperature , Water/chemistry
19.
Chem Commun (Camb) ; 52(13): 2792-4, 2016 Feb 14.
Article in English | MEDLINE | ID: mdl-26771027

ABSTRACT

Ionic transport (for applications in nanofluidics or membranes) and "ionic diode" phenomena in a zeolitic imidazolate framework (ZIF-8) are investigated by directly growing the framework from aqueous Zn(2+) and 2-methylimidazole as an "asymmetric plug" into a 20 µm diameter pore in a ca. 6 µm thin poly-ethylene-terephthalate (PET) film.

20.
ACS Appl Mater Interfaces ; 7(46): 25685-92, 2015 Nov 25.
Article in English | MEDLINE | ID: mdl-26517577

ABSTRACT

Aerosol processing enables the preparation of hierarchical graphene nanocomposites with special crumpled morphology in high yield and in a short time. Using modular insertion of suitable precursors in the starting solution, it is possible to synthesize different types of graphene-based materials ranging from heteroatom-doped graphene nanoballs to hierarchical nanohybrids made up by nitrogen-doped crumpled graphene nanosacks that wrap finely dispersed MoS2 nanoparticles. These materials are carefully investigated by microscopic (SEM, standard and HR TEM), diffraction (grazing incidence X-ray diffraction (GIXRD)) and spectroscopic (high resolution photoemission, Raman and UV-visible spectroscopy) techniques, evidencing that nitrogen dopants provide anchoring sites for MoS2 nanoparticles, whereas crumpling of graphene sheets drastically limits aggregation. The activity of these materials is tested toward the photoelectrochemical production of hydrogen, obtaining that N-doped graphene/MoS2 nanohybrids are seven times more efficient with respect to single MoS2 because of the formation of local p-n MoS2/N-doped graphene nanojunctions, which allow an efficient charge carrier separation.

SELECTION OF CITATIONS
SEARCH DETAIL
...