Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
1.
Article in English | MEDLINE | ID: mdl-38935097

ABSTRACT

Research efforts aimed at improving the crystal quality of solution-processed Cu2ZnSn(S,Se)4 (CZTSSe) absorbers have largely employed delicate pre- and postprocessing strategies, such as multistep selenization, heat treatment in mixed chalcogen atmospheres, and multinary extrinsic doping that are often complex and difficult to reproduce. On the other hand, understanding and tuning chemical interactions in precursor inks prior to the thin-film deposition have received significantly less attention. Herein, we show for the first time how the complexation of metallic and chalcogen precursors in solution have a stark influence on the crystallization and optoelectronic quality of CZTSSe absorbers. By varying thiourea to metal cation ratios (TU/M) in dimethylformamide (DMF) and isopropyl alcohol (IPA)-based inks, we observed the formation of nanoscale metal-organic complexes and submicron size aggregates which play a key role in the morphology of the precursor layers obtained by spin-coating and drying steps. We also identify the primary cations in the complexation and assembling processes in solution. The morphology of the precursor film, in turn, has an important effect on grain growth and film absorber structure after the reactive annealing in the presence of Se. Finally, we establish a link between metal complexes in precursor solutions and device performance, with power conversion efficiency increasing from approximately 2 to 8% depending on the TU/M and Cu/(Zn + Sn) ratios.

2.
Int J Cardiol ; 411: 132263, 2024 Jun 13.
Article in English | MEDLINE | ID: mdl-38878873

ABSTRACT

BACKGROUND: Atrial fibrillation (AF) increases stroke and mortality in patients with hypertrophic cardiomyopathy (HCM). Cardiac MRI (CMR) is increasingly used to detect late gadolinium enhancement (LGE) as a reliable indicator of left ventricular fibrosis, a potential predisposing factor of AF. Our research explored the correlation between left ventricular LGE and AF prevalence in HCM. METHODS: This retrospective study involved 351 HCM patients who underwent CMR. LGE percentages (0%, 1-5%, 6-14%, ≥15%) on CMR were compared with AF prevalence in HCM patients. Demographic, comorbidity, and imaging data were analyzed using appropriate univariate and multivariate analyses assessing for significant differences in AF prevalence. The predetermined significance level was p < 0.05. RESULTS: CMR demonstrated increased LGE in those with AF (p = 0.004). Increased LGE correlated with increased AF rates: 27.6% (0% LGE), 38.5% (1-5% LGE), 44.4% (6-14% LGE), and 54.7% (≥15% LGE) (p = 0.101, p = 0.043, p = 0.002, respectively, vs. 0% LGE). Adjusted for age, differences persisted and were most evident for LGE >15% (p = 0.001). Multivariate analysis, factoring age, gender, BMI, RVSP, and LVEF, supported LGE (odds ratio of 1.20, p = 0.036) and LAVI (odds ratio 1.05, 1.02-1.07, p < 0.001) as predictive markers for AF prevalence. CONCLUSIONS: Our study suggests a correlation between ventricular LGE and AF in patients with HCM. LGE exceeding 15% was associated with a significant increase in AF prevalence. These patients may require more frequent AF monitoring.

3.
JACC Heart Fail ; 12(1): 164-177, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38176782

ABSTRACT

BACKGROUND: Data assessing the long-term safety and efficacy of mavacamten treatment for symptomatic obstructive hypertrophic cardiomyopathy are needed. OBJECTIVES: The authors sought to evaluate interim results from the EXPLORER-Long Term Extension (LTE) cohort of MAVA-LTE (A Long-Term Safety Extension Study of Mavacamten in Adults Who Have Completed EXPLORER-HCM; NCT03723655). METHODS: After mavacamten or placebo withdrawal at the end of the parent EXPLORER-HCM (Clinical Study to Evaluate Mavacamten [MYK-461] in Adults With Symptomatic Obstructive Hypertrophic Cardiomyopathy; NCT03470545), patients could enroll in MAVA-LTE. Patients received mavacamten 5 mg once daily; adjustments were made based on site-read echocardiograms. RESULTS: Between April 9, 2019, and March 5, 2021, 231 of 244 eligible patients (94.7%) enrolled in MAVA-LTE (mean age: 60 years; 39% female). At data cutoff (August 31, 2021) 217 (93.9%) remained on treatment (median time in study: 62.3 weeks; range: 0.3-123.9 weeks). At 48 weeks, patients showed improvements in left ventricular outflow tract (LVOT) gradients (mean change ± SD from baseline: resting: -35.6 ± 32.6 mm Hg; Valsalva: -45.3 ± 35.9 mm Hg), N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels (median: -480 ng/L; Q1-Q3: -1,104 to -179 ng/L), and NYHA functional class (67.5% improved by ≥1 class). LVOT gradients and NT-proBNP reductions were sustained through 84 weeks in patients who reached this timepoint. Over 315 patient-years of exposure, 8 patients experienced an adverse event of cardiac failure, and 21 patients had an adverse event of atrial fibrillation, including 11 with no prior history of atrial fibrillation. Twelve patients (5.2%) developed transient reductions in site-read echocardiogram left ventricular ejection fraction of <50%, resulting in temporary treatment interruption; all recovered. Ten patients discontinued treatment due to treatment-emergent adverse events. CONCLUSIONS: Mavacamten treatment showed clinically important and durable improvements in LVOT gradients, NT-proBNP levels, and NYHA functional class, consistent with EXPLORER-HCM. Mavacamten treatment was well tolerated over a median 62-week follow-up.


Subject(s)
Atrial Fibrillation , Cardiomyopathy, Hypertrophic , Heart Failure , Adult , Female , Humans , Male , Middle Aged , Cardiomyopathy, Hypertrophic/drug therapy , Stroke Volume , Ventricular Function, Left
4.
ACS Mater Au ; 4(1): 74-81, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38221925

ABSTRACT

Transition metal oxides are characterized by an acute structure and composition dependent electrocatalytic activity toward the oxygen evolution (OER) and oxygen reduction (ORR) reactions. For instance, Mn containing oxides are among the most active ORR catalysts, while Ni based compounds tend to show high activity toward the OER in alkaline solutions. In this study, we show that incorporation of Ni into α-MnO2, by adding Ni precursor into the Mn-containing hydrothermal solution, can generate distinctive sites with different electronic configurations and contrasting electrocatalytic activity. The structure and composition of the Ni modified hollandite α-MnO2 phase were investigated by X-ray absorption spectroscopy (XAS), X-ray diffraction (XRD), transmission electron microscopy coupled to energy-dispersive X-ray spectroscopy (TEM-EDX), inductively coupled plasma-optical emission spectroscopy (ICP-OES), and X-ray photoelectron spectroscopy (XPS). Our analysis suggests that Mn replacement by Ni into the α-MnO2 lattice (site A) occurs up to approximately 5% of the total Mn content, while further increasing Ni content promotes the nucleation of separate Ni phases (site B). XAS and XRD show that the introduction of sites A and B have a negligible effect on the overall Mn oxidation state and bonding characteristics, while very subtle changes in the XPS spectra appear to suggest changes in the electronic configuration upon Ni incorporation into the α-MnO2 lattice. On the other hand, changes in the electronic structure promoted by site A have a significant impact in the pseudocapacitive responses obtained by cyclic voltammetry in KOH solution at pH 13, revealing the appearance of Mn 3d orbitals at the energy (potential) range relevant to the ORR. The evolution of Mn 3d upon Ni replacement significantly increases the catalytic activity of α-MnO2 toward the ORR. Interestingly, the formation of segregated Ni phases (site B) leads to a decrease in the ORR activity while increasing the OER rate.

5.
Nanomaterials (Basel) ; 13(24)2023 Dec 10.
Article in English | MEDLINE | ID: mdl-38133009

ABSTRACT

Over the last decade, research in organic-inorganic lead halide perovskite solar cells (PSCs) has gathered unprecedented momentum, putting the technology on the brink of full-scale commercialization. A wide range of strategies have been implemented for enhancing the power conversion efficiency of devices and modules, as well as improving stability toward high levels of irradiation, temperature, and humidity. Another key element in the path to commercialization is the scalability of device manufacturing, which requires large-scale deposition of conformal layers without compromising the delicate structure of the perovskite film. In this context, atomic layer deposition (ALD) tools excel in depositing high-quality conformal films with precise control of film composition and thickness over large areas at relatively low processing temperatures. In this commentary, we will briefly outline recent progress in PSC technology enabled by ALD tools, focusing on layers deposited above the absorber layer. These interlayers include charge transport layers, passivation layers, buffer layers, and encapsulation techniques. Additionally, we will discuss some of the challenges and potential avenues for research in PSC technology underpinned by ALD tools.

6.
JAMA Cardiol ; 8(10): 968-977, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37639243

ABSTRACT

Importance: There is an unmet need for novel medical therapies before recommending invasive therapies for patients with severely symptomatic obstructive hypertrophic cardiomyopathy (HCM). Mavacamten has been shown to improve left ventricular outflow tract (LVOT) gradient and symptoms and may thus reduce the short-term need for septal reduction therapy (SRT). Objective: To examine the cumulative longer-term effect of mavacamten on the need for SRT through week 56. Design, Setting, and Participants: This was a double-blind, placebo-controlled, multicenter, randomized clinical trial with placebo crossover at 16 weeks, conducted from July 2020 to November 2022. Participants were recruited from 19 US HCM centers. Included in the trial were patients with obstructive HCM (New York Heart Association class III/IV) referred for SRT. Study data were analyzed April to August 2023. Interventions: Patients initially assigned to mavacamten at baseline continued the drug for 56 weeks, and patients taking placebo crossed over to mavacamten from week 16 to week 56 (40-week exposure). Dose titrations were performed using echocardiographic LVOT gradient and LV ejection fraction (LVEF) measurements. Main Outcome and Measure: Proportion of patients undergoing SRT, remaining guideline eligible or unevaluable SRT status at week 56. Results: Of 112 patients with highly symptomatic obstructive HCM, 108 (mean [SD] age, 60.3 [12.5] years; 54 male [50.0%]) qualified for the week 56 evaluation. At week 56, 5 of 56 patients (8.9%) in the original mavacamten group (3 underwent SRT, 1 was SRT eligible, and 1 was not SRT evaluable) and 10 of 52 patients (19.2%) in the placebo crossover group (3 underwent SRT, 4 were SRT eligible, and 3 were not SRT evaluable) met the composite end point. A total of 96 of 108 patients (89%) continued mavacamten long term. Between the mavacamten and placebo-to-mavacamten groups, respectively, after 56 weeks, there was a sustained reduction in resting (mean difference, -34.0 mm Hg; 95% CI, -43.5 to -24.5 mm Hg and -33.2 mm Hg; 95% CI, -41.9 to -24.5 mm Hg) and Valsalva (mean difference, -45.6 mm Hg; 95% CI, -56.5 to -34.6 mm Hg and -54.6 mm Hg; 95% CI, -66.0 to -43.3 mm Hg) LVOT gradients. Similarly, there was an improvement in NYHA class of 1 or higher in 51 of 55 patients (93%) in the original mavacamten group and in 37 of 51 patients (73%) in the placebo crossover group. Overall, 12 of 108 patients (11.1%; 95% CI, 5.87%-18.60%), which represents 7 of 56 patients (12.5%) in the original mavacamten group and 5 of 52 patients (9.6%) in the placebo crossover group, had an LVEF less than 50% (2 with LVEF ≤30%, one of whom died), and 9 of 12 patients (75%) continued treatment. Conclusions and Relevance: Results of this randomized clinical trial showed that in patients with symptomatic obstructive HCM, mavacamten reduced the need for SRT at week 56, with sustained improvements in LVOT gradients and symptoms. Although this represents a useful therapeutic option, given the potential risk of LV systolic dysfunction, there is a continued need for close monitoring. Trial Registration: ClinicalTrials.gov Identifier: NCT04349072.

7.
J Card Fail ; 29(4): 473-478, 2023 04.
Article in English | MEDLINE | ID: mdl-36195201

ABSTRACT

BACKGROUND: Cardiologists performing coronary angiography (CA) and percutaneous coronary intervention (PCI) are at risk of health problems related to chronic occupational radiation exposure. Unlike during CA and PCI, physician radiation exposure during right heart catheterization (RHC) and endomyocardial biopsy (EMB) has not been adequately studied. The objective of this study was to assess physicians' radiation doses during RHC with and without EMB and compare them to those of CA and PCI. METHODS: Procedural head-level physician radiation doses were collected by real-time dosimeters. Radiation-dose metrics (fluoroscopy time, air kerma [AK] and dose area product [DAP]), and physician-level radiation doses were compared among RHC, RHC with EMB, CA, and PCI. RESULTS: Included in the study were 351 cardiac catheterization procedures. Of these, 36 (10.3%) were RHC, 42 (12%) RHC with EMB, 156 (44.4%) CA, and 117 (33.3%) PCI. RHC with EMB and CA had similar fluoroscopy time. AK and DAP were progressively higher for RHC, RHC with EMB, CA, and PCI. Head-level physician radiation doses were similar for RHC with EMB vs CA (P = 0.07). When physicians' radiation doses were normalized to DAP, RHC and RHC with EMB had the highest doses. CONCLUSION: Physicians' head-level radiation doses during RHC with EMB were similar to those of CA. After normalizing to DAP, RHC and RHC with EMB were associated with significantly higher physician radiation doses than CA or PCI. These observations suggest that additional protective measures should be undertaken to decrease physicians' radiation exposure during RHC and, in particular, RHC with EMB.


Subject(s)
Heart Failure , Percutaneous Coronary Intervention , Physicians , Radiation Exposure , Humans , Percutaneous Coronary Intervention/adverse effects , Radiation Dosage , Radiation Exposure/adverse effects , Cardiac Catheterization/adverse effects , Cardiac Catheterization/methods , Biopsy/adverse effects , Coronary Angiography/adverse effects
8.
Chem Sci ; 13(37): 11252-11259, 2022 Sep 28.
Article in English | MEDLINE | ID: mdl-36320475

ABSTRACT

Point defects (PDs) play a key role in the properties of semiconductor photoelectrodes, from doping density to carrier mobility and lifetime. Although this issue has been extensively investigated in the context of photovoltaic absorbers, the role of PDs in photoelectrodes for solar fuels remains poorly understood. In perovskite oxides such as LaFeO3 (LFO), PDs can be tuned by changing the cation ratio, cation substitution and oxygen content. In this paper, we report the first study on the impact of bulk and surface PDs on the photoelectrochemical properties of LFO thin films. We independently varied the La : Fe ratio, within 10% of the stoichiometric value, in the bulk and at the surface by tuning the precursor composition as well as selective acid etching. The structure and composition of thin films deposited by sol-gel methods were investigated by SEM-EDX, ICP-OES, XPS and XRD. Our analysis shows a correlation between the binding energies of Fe 2p3/2 and O 1s, establishing a link between the oxidation state of Fe and the covalency of the Fe-O bond. Electrochemical studies reveal the emergence of electronic states close to the valence band edge with decreasing bulk Fe content. DFT calculations confirm that Fe vacancies generate states located near the valence band, which act as hole-traps and recombination sites under illumination. Dynamic photocurrent responses associated with oxygen reduction and hydrogen evolution show that the stoichiometric La : Fe ratio provides the most photoactive oxide; however, this can only be achieved by independently tuning the bulk and surface compositions of the oxide.

13.
Faraday Discuss ; 239(0): 70-84, 2022 Oct 28.
Article in English | MEDLINE | ID: mdl-35822567

ABSTRACT

Cu2ZnSn(S,Se)4 (CZTSSe) is a promising material for thin-film photovoltaics, however, the open-circuit voltage (VOC) deficit of CZTSSe prevents the device performance from exceeding 13% conversion efficiency. CZTSSe is a heavily compensated material that is rich in point defects and prone to the formation of secondary phases. The landscape of these defects is complex and some mitigation is possible by employing non-stoichiometric conditions. Another route used to reduce the effects of undesirable defects is the doping and alloying of the material to suppress certain defects and improve crystallization, such as with germanium. The majority of works deposit Ge adjacent to a stacked metallic precursor deposited by physical vapour deposition before annealing in a selenium rich atmosphere. Here, we use an established hot-injection process to synthesise Cu2ZnSnS4 nanocrystals of a pre-determined composition, which are subsequently doped with Ge during selenisation to aid recrystallisation and reduce the effects of Sn species. Through Ge incorporation, we demonstrate structural changes with a negligible change in the energy bandgap but substantial increases in the crystallinity and grain morphology, which are associated with a Ge-Se growth mechanism, and gains in both the VOC and conversion efficiency. We use surface energy-filtered photoelectron emission microscopy (EF-PEEM) to map the surface work function terrains and show an improved electronic landscape, which we attribute to a reduction in the segregation of low local effective work function (LEWF) Sn(II) chalcogenide phases.

14.
ACS Appl Energy Mater ; 5(4): 3933-3940, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35497685

ABSTRACT

The sub-bandgap levels associated with defect states in Cu2ZnSnS4 (CZTS) thin films are investigated by correlating the temperature dependence of the absorber photoluminescence (PL) with the device admittance spectroscopy. CZTS thin films are prepared by thermolysis of molecular precursors incorporating chloride salts of the cations and thiourea. Na and Sb are introduced as dopants in the precursor layers to assess their impact on Cu/Zn and Sn site disorder, respectively. Systematic analysis of PL spectra as a function of excitation power and temperature show that radiative recombination is dominated by quasi-donor-acceptor pairs (QDAP) with a maximum between 1.03 and 1.18 eV. It is noteworthy that Sb doping leads to a transition from localized to delocalized QDAP. The activation energies obtained associated with QDAP emission closely correlate with the activation energies of the admittance responses in a temperature range between 150 K and room temperature in films with or without added dopants. Admittance data of CZTS films with no added dopants also have a strong contribution from a deeper state associated with Sn disorder. The ensemble of PL and admittance data, in addition to energy-filtered photoemission of electron microscopy (EF-PEEM), shows a detailed picture of the distribution of sub-bandgap states in CZTS and the impact of doping on their energetics and device performance.

15.
J Am Chem Soc ; 144(10): 4439-4447, 2022 Mar 16.
Article in English | MEDLINE | ID: mdl-35254811

ABSTRACT

The atomistic rationalization of the activity of transition metal oxides toward oxygen electrocatalysis is one of the most complex challenges in the field of electrochemical energy conversion. Transition metal oxides exhibit a wide range of structural and electronic properties, which are acutely dependent on composition and crystal structure. So far, identifying one or several properties of transition metal oxides as descriptors for oxygen electrocatalysis remains elusive. In this work, we performed a detailed experimental and computational study of LaMnxNi1-xO3 perovskite nanostructures, establishing an unprecedented correlation between electrocatalytic activity and orbital composition. The composition and structure of the single-phase rhombohedral oxide nanostructures are characterized by a variety of techniques, including X-ray diffraction, X-ray absorption spectroscopy, X-ray photoelectron spectroscopy, and electron microscopy. Systematic electrochemical analysis of pseudocapacitive responses in the potential region relevant to oxygen electrocatalysis shows the evolution of Mn and Ni d-orbitals as a function of the perovskite composition. We rationalize these observations on the basis of electronic structure calculations employing DFT with HSE06 hybrid functional. Our analysis clearly shows a linear correlation between the OER kinetics and the integrated density of states (DOS) associated with Ni and Mn 3d states in the energy range relevant to operational conditions. In contrast, the ORR kinetics exhibits a second-order reaction with respect to the electron density in Mn and Ni 3d states. For the first time, our study identifies the relevant DOS dominating both reactions and the importance of understanding orbital occupancy under operational conditions.

16.
Am J Transplant ; 21(3): 1255-1262, 2021 03.
Article in English | MEDLINE | ID: mdl-32978873

ABSTRACT

Historically, patients with restrictive (RCM) and hypertrophic cardiomyopathy (HCM) experienced longer wait-times for heart transplant (HT) and increased waitlist mortality. Recently, a new HT allocation system was implemented in the United States. We sought to determine the impact of the new HT system on RCM/HCM patients. Adult patients with RCM/HCM listed for HT between November 2015 and September 2019 were identified from the UNOS database. Patients were stratified into two groups: old system and new system. We identified 872 patients who met inclusion criteria. Of these, 608 and 264 were classified in the old and new system groups, respectively. The time in the waitlist was shorter (25 vs. 54 days, P < .001), with an increased frequency of HT in the new system (74% vs. 68%, P = .024). Patients who were transplanted in the new system had a longer ischemic time, increased use of temporary mechanical circulatory support and mechanical ventilation. There was no difference in posttransplant survival at 9 months (91.1% vs. 88.9%) (p = .4). We conclude that patients with RCM/HCM have benefited from the new HT allocation system, with increased access to HT without affecting short-term posttransplant survival.


Subject(s)
Cardiomyopathy, Hypertrophic , Heart Transplantation , Transplants , Adult , Cardiomyopathy, Hypertrophic/surgery , Databases, Factual , Heart Transplantation/adverse effects , Humans , Retrospective Studies , United States/epidemiology , Waiting Lists
17.
ACS Appl Mater Interfaces ; 12(28): 31486-31495, 2020 Jul 15.
Article in English | MEDLINE | ID: mdl-32539332

ABSTRACT

The effects of alkaline-earth metal cation (AMC; Mg2+, Ca2+, Sr2+, and Ba2+) substitution on the photoelectrochemical properties of phase-pure LaFeO3 (LFO) thin-films are elucidated by X-ray photoemission spectroscopy (XPS), X-ray diffraction (XRD), diffuse reflectance, and electrochemical impedance spectroscopy (EIS). XRD confirms the formation of single-phase cubic LFO thin films with a rather complex dependence on the nature of the AMC and extent of substitution. Interestingly, subtle trends in lattice constant variations observed in XRD are closely correlated with shifts in the binding energies of Fe 2p3/2 and O 1s orbitals associated with the perovskite lattice. We establish a scaling factor between these two photoemission peaks, unveiling key correlation between Fe oxidation state and Fe-O covalency. Diffuse reflectance shows that optical transitions are little affected by AMC substitution below 10%, which are dominated by a direct bandgap transition close to 2.72 eV. Differential capacitance data obtained from EIS confirm the p-type characteristic of pristine LFO thin-films, revealing the presence of sub-bandgap electronic state (A-states) close to the valence band edge. The density of A-states is decreased upon AMC substitution, while the overall capacitance increases (increase in dopant level) and the apparent flat-band potential shifts toward more positive potentials. This behavior is consistent with the change in the valence band photoemission edge. In addition, capacitance data of cation-substituted films show the emergence of deeper states centered around 0.6 eV above the valence band edge (B-states). Photoelectrochemical responses toward the hydrogen evolution and oxygen reduction reactions in alkaline solutions show a complex dependence on alkaline-earth metal incorporation, reaching incident-photon-to-current conversion efficiency close to 20% in oxygen saturated solutions. We rationalize the photoresponses of the LFO films in terms of the effect sub-bandgap states on majority carrier mobility, charge transfer, and recombination kinetics.

18.
iScience ; 9: 36-46, 2018 Nov 30.
Article in English | MEDLINE | ID: mdl-30384132

ABSTRACT

The performance of Cu2ZnSn(S,Se)4 thin-film solar cells, commonly referred to as kesterite or CZTSSe, is limited by open-circuit voltage (VOC) values less than 60% of the maximum theoretical limit. In the present study, we employ energy-filtered photoemission microscopy to visualize nanoscale shunting paths in solution-processed CZTSSe films, which limit the VOC of cells to approximately 400 mV. These studies unveil areas of local effective work function (LEWF) narrowly distributed around 4.9 eV, whereas other portions show hotspots with LEWF as low as 4.2 eV. Localized valence band spectra and density functional theory calculations allow rationalizing the LEWF maps in terms of the CZTSSe effective work function broadened by potential energy fluctuations and nanoscale Sn(S,Se) phases.

19.
ChemElectroChem ; 5(14): 1922-1927, 2018 Jul 11.
Article in English | MEDLINE | ID: mdl-30263882

ABSTRACT

The electrocatalytic activity of La1-x Ba x MnO3 nanoparticles towards the oxygen reduction reaction (ORR) is investigated as a function of the A-site composition. Phase-pure oxide nanoparticles with a diameter in the range of 40 to 70 nm were prepared by using an ionic liquid route and deposited onto mesoporous carbon films. The structure and surface composition of the nanoparticles are probed by XRD, TEM, EDX, and XPS. Electrochemical studies carried out under alkaline conditions show a strong correlation between the activity of La1-x Ba x MnO3 and the effective number of reducible Mn sites at the catalysts layer. Our analysis demonstrates that, beyond controlling particle size and surface elemental segregation, understanding and controlling Mn coordination at the first atomic layer is crucial for increasing the performance of these materials.

20.
J Phys Chem Lett ; 9(4): 895-901, 2018 Feb 15.
Article in English | MEDLINE | ID: mdl-29389137

ABSTRACT

Organic cation rotation in hybrid organic-inorganic lead halide perovskites has previously been associated with low charge recombination rates and (anti)ferroelectric domain formation. Two-dimensional infrared spectroscopy (2DIR) was used to directly measure 470 ± 50 fs and 2.8 ± 0.5 ps time constants associated with the reorientation of formamidinium cations (FA+, NH2CHNH2+) in formamidinium lead iodide perovskite thin films. Molecular dynamics simulations reveal the FA+ agitates about an equilibrium position, with NH2 groups pointing at opposite faces of the inorganic lattice cube, and undergoes 90° flips on picosecond time scales. Time-resolved infrared measurements revealed a prominent vibrational transient feature arising from a vibrational Stark shift: photogenerated charge carriers increase the internal electric field of perovskite thin films, perturbing the FA+ antisymmetric stretching vibrational potential, resulting in an observed 5 cm-1 shift. Our 2DIR results provide the first direct measurement of FA+ rotation inside thin perovskite films, and cast significant doubt on the presence of long-lived (anti)ferroelectric domains, which the observed low charge recombination rates have been attributed to.

SELECTION OF CITATIONS
SEARCH DETAIL
...