Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 20(18)2020 Sep 09.
Article in English | MEDLINE | ID: mdl-32916964

ABSTRACT

Currently, a high percentage of the world's population lives in urban areas, and this proportion will increase in the coming decades. In this context, indoor positioning systems (IPSs) have been a topic of great interest for researchers. On the other hand, Visible Light Communication (VLC) systems have advantages over RF technologies; for instance, they do not need satellite signals or the absence of electromagnetic interference to achieve positioning. Nowadays, in the context of Indoor Positioning (IPS), Visible Light Positioning (VLP) systems have become a strong alternative to RF-based systems, allowing the reduction in costs and time to market. This paper shows a low cost VLP solution for indoor systems. This includes multiple programmable beacons and a receiver which can be plugged to a smartphone running a specific app. The position information will be quickly and securely available through the interchange between the receiver and any configurable LED-beacon which is strategically disposed in an area. The implementation is simple, inexpensive, and no direct communication with any data server is required.

2.
Sensors (Basel) ; 12(7): 9006-23, 2012.
Article in English | MEDLINE | ID: mdl-23012530

ABSTRACT

This paper presents a fast calibration method to determine the transfer function for spatial correspondences in image transmission devices with Incoherent Optical Fiber Bundles (IOFBs), by performing a scan of the input, using differential patterns generated from a Gray code (Differential Gray-Code Space Encoding, DGSE). The results demonstrate that this technique provides a noticeable reduction in processing time and better quality of the reconstructed image compared to other, previously employed techniques, such as point or fringe scanning, or even other known space encoding techniques.

3.
Sensors (Basel) ; 12(4): 4133-55, 2012.
Article in English | MEDLINE | ID: mdl-22666023

ABSTRACT

Image transmission using incoherent optical fiber bundles (IOFBs) requires prior calibration to obtain the spatial in-out fiber correspondence necessary to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table called the Reconstruction Table (RT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a very fast method based on image-scanning using spaces encoded by a weighted binary code to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and the image reconstruction quality is very good compared to previous techniques based on spot or line scanning, for example.

4.
Sensors (Basel) ; 10(1): 47-60, 2010.
Article in English | MEDLINE | ID: mdl-22315526

ABSTRACT

A focusing procedure in the calibration process of image sensors based on Incoherent Optical Fiber Bundles (IOFBs) is described using the information extracted from fibers. These procedures differ from any other currently known focusing method due to the non spatial in-out correspondence between fibers, which produces a natural codification of the image to transmit. Focus measuring is essential prior to carrying out calibration in order to guarantee accurate processing and decoding. Four algorithms have been developed to estimate the focus measure; two methods based on mean grey level, and the other two based on variance. In this paper, a few simple focus measures are defined and compared. Some experimental results referred to the focus measure and the accuracy of the developed methods are discussed in order to demonstrate its effectiveness.


Subject(s)
Image Enhancement/instrumentation , Image Enhancement/standards , Lighting/instrumentation , Lighting/standards , Optical Fibers/standards , Transducers/standards , Calibration , Equipment Design , Equipment Failure Analysis/standards , Spain
5.
Sensors (Basel) ; 9(11): 8896-906, 2009.
Article in English | MEDLINE | ID: mdl-22291543

ABSTRACT

An alternative method for distance measurement is presented, based on a radiometric approach to the image formation process. The proposed methodology uses images from an infrared emitting diode (IRED) to estimate the distance between the camera and the IRED. Camera output grey-level intensities are a function of the accumulated image irradiance, which is also related by inverse distance square law to the distance between the camera and the IRED. Analyzing camera-IRED distance, magnitudes that affected image grey-level intensities, and therefore accumulated image irradiance, were integrated into a differential model which was calibrated and used for distance estimation over a 200 to 600 cm range. In a preliminary model, the camera and the emitter were aligned.

6.
Sensors (Basel) ; 9(12): 10434-46, 2009.
Article in English | MEDLINE | ID: mdl-22303183

ABSTRACT

In this paper, the problem of how to estimate the distance between an infrared emitter diode (IRED) and a camera from pixel grey-level intensities is examined from a practical standpoint. Magnitudes that affect grey level intensity were defined and related to the zero frequency component from the FFT image. A general model was also described and tested for distance estimation over the range from 420 to 800 cm using a differential methodology. Method accuracy is over 3%.

7.
Sensors (Basel) ; 9(10): 8215-29, 2009.
Article in English | MEDLINE | ID: mdl-22408502

ABSTRACT

Image transmission using incoherent optical fiber bundles (IOFB) requires prior calibration to obtain the spatial in-out fiber correspondence in order to reconstruct the image captured by the pseudo-sensor. This information is recorded in a Look-Up Table (LUT), used later for reordering the fiber positions and reconstructing the original image. This paper presents a method based on line-scan to obtain the in-out correspondence. The results demonstrate that this technique yields a remarkable reduction in processing time and increased image quality by introducing a fiber detection algorithm, an intensity compensation process and finally, a single interpolation algorithm.

SELECTION OF CITATIONS
SEARCH DETAIL
...