Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
ACS Appl Mater Interfaces ; 16(27): 35554-35565, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38941240

ABSTRACT

In this work, we present a series of nanocomposites for Fused filament fabrication (FFF) based on polycaprolactone (PCL) and chitin nanocrystals (ChNCs). The ChNCs were synthesized by acid hydrolysis using HCl or lactic acid (LA). The approach using LA, an organic acid, makes the ChNCs synthesis more sustainable and modifies their surface with lactate groups, increasing their compatibility with the PCL matrix. The ChNCs characterization by X-ray diffraction, Fourier transform infrared spectroscopy, scanning electron microscopy, and transmission electron microscopy revealed that both ChNCs presented similar morphologies and crystallinity, while differential scanning calorimetry and thermogravimetric analysis proved that they can bear temperatures up to 210 °C without degrading, which allows their processing in the manufacturing of PCL composites by twin-screw extrusion. Therefore, PCL composites in the form of filaments containing 0.5-1.0 wt % ChNCs were produced and used as feedstock in FFF, and standard tensile and flexural specimens were printed at different temperatures, up to 170 °C, to assess the influence of the ChNCs in the mechanical properties of the material. The tensile testing results showed that the presence of ChNCs enhances the strength and ductility of the PCL matrix, increasing the elongation at break around 20-50%. Moreover, the vertically printed flexural specimens showed a very different bending behavior, such that the pure PCL specimens presented a brittle fracture at 7% strain, while the ChNCs composites were able to bend over themselves. Hence, this work proves that the presence of ChNCs aims to improve the interlayer adhesion of the objects manufactured by FFF due to their good adhesive properties, which is currently a concern for the scientific community and the industrial sector.

2.
J Funct Biomater ; 14(10)2023 Oct 09.
Article in English | MEDLINE | ID: mdl-37888165

ABSTRACT

This study focuses on developing hydroxyapatite synthesized from a CaCO3-rich byproduct of sugar beet processing called Carbocal® using a hydrothermal reactor. The purpose of this biomaterial is to enhance the osteoinductivity of implantable surfaces and serve as a bone filler, providing a sustainable and economically more affordable alternative. This research involved compositional analysis and micro- and macrostructural physicochemical characterization, complemented with bioactivity and live/dead assays. The biphasic nature of the Carbocal®-derived sample was significant within the context of the bioactivity concept previously proposed in the literature. The bioactivity of the biomaterial was demonstrated through a viability test, where the cell growth was nearly equivalent to that of the positive control. For comparison purposes, the same tests were conducted with two additional samples: hydroxyapatite obtained from CaCO3 and commercial hydroxyapatite. The resulting product of this process is biocompatible and possesses properties similar to natural hydroxyapatite. Consequently, this biomaterial shows potential as a scaffold in tissue engineering and as an adhesive filler to promote bone regeneration within the context of the circular bioeconomy in the geographical area proposed.

3.
Polymers (Basel) ; 15(16)2023 Aug 18.
Article in English | MEDLINE | ID: mdl-37631515

ABSTRACT

Polylactic acid (PLA) is a biodegradable polymer that can replace petroleum-based polymers and is widely used in material extrusion additive manufacturing (AM). The reprocessing of PLA leads to a downcycling of its properties, so strategies are being sought to counteract this effect, such as blending with virgin material or creating nanocomposites. Thus, two sets of nanocomposites based respectively on virgin PLA and a blend of PLA and reprocessed PLA (rPLA) with the addition of 0, 3, and 7 wt% of titanium dioxide nanoparticles (TiO2) were created via a double screw extruder system. All blends were used for material extrusion for 3D printing directly from pellets without difficulty. Scanning electron micrographs of fractured samples' surfaces indicate that the nanoparticles gathered in agglomerations in some blends, which were well dispersed in the polymer matrix. The thermal stability and degree of crystallinity for every set of nanocomposites have a rising tendency with increasing nanoparticle concentration. The glass transition and melting temperatures of PLA/TiO2 and PLA/rPLA/TiO2 do not differ much. Tensile testing showed that although reprocessed material implies a detriment to the mechanical properties, in the specimens with 7% nano-TiO2, this effect is counteracted, reaching values like those of virgin PLA.

4.
ACS Appl Mater Interfaces ; 15(1): 1808-1816, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36534002

ABSTRACT

Herein we show that dispersing inorganic cesium lead bromide (CsPbBr3) perovskite quantum dots (QDs) in optical quality films, possessing an accessible and controlled pore size distribution, gives rise to fluorescent materials with a controlled and highly sensitive response to ambient changes. A scaffold-based synthesis approach is employed to obtain ligand-free QDs, whose pristine surface endows them with high sensitivity to the presence of different vapors in their vicinity. At the same time, the void network of the host offers a means to gradually expose the embedded QDs to such vapors. Under these conditions, the luminescent response of the QDs is mediated by the mesostructure of the matrix, which determines the rate at which vapor molecules will adsorb onto the pore walls and, eventually, condensate, filling the void space. With luminescence quantum yields as high as 60%, scaffold-supported ligand-free perovskite nanocrystals display intense photoemission signals over the whole process, as well as high photo- and chemical stability, which allows illuminating them for long periods of time and recovering the original response upon desorption of the condensed phase. The results herein presented open a new route to explore the application of perovskite QD-based materials in sensing.

5.
ACS Appl Polym Mater ; 4(2): 1225-1233, 2022 Feb 11.
Article in English | MEDLINE | ID: mdl-35187495

ABSTRACT

Cork powder received as a byproduct from local industries is valorized through the development of composite materials suitable for fused deposition modeling (FDM). For this purpose, a polymeric matrix of acrylonitrile-styrene-butyl acrylate (ASA) is used due to its good mechanical resistance and weather resistance properties. Prior to the manufacturing of the composites, the cork particles are characterized and modified by surface polymerization, creating a layer of poly(butyl acrylate) (PBA). Then, filaments for FDM are prepared by solvent casting and extrusion from ASA and composites with unmodified cork (ASA + C) and PBA-modified cork (ASA + Cm). PBA is one of the polymers present in the structure of ASA, which increases the compatibility between the cork particles and the polymer matrix. This is evidenced by evaluating the mechanical properties of the composites and examining their fracture surface by scanning electron microscopy. The analysis of the thermal properties shows that the developed composites also present enhanced insulating properties.

6.
Nanoscale ; 11(46): 22378-22386, 2019 Nov 28.
Article in English | MEDLINE | ID: mdl-31730145

ABSTRACT

Photonic applications based on halide perovskites, namely CH3NH3PbI3 (MAPbI3), have recently attracted remarkable attention due to the high efficiencies reported for photovoltaic and light emitting devices. Despite these outstanding results, there are many temperature-, laser excitation power-, and morphology-dependent phenomena that require further research to be completely understood. In this work, we have investigated in detail the nature of exciton optical transitions and recombination dynamics below and above the orthorhombic/tetragonal ('O'-/'T'-) temperature phase transition (∼150 K) depending on the material continuity (continuous-like) or discontinuity (island-like) in MAPbI3 films. At low temperatures, continuous thin films of the perovskite can exhibit strain inhomogeneities associated with the formation of different 'T'-defective domains leading to an energy spread of states over more than 200 meV. On the other hand, a single photoluminescence line peak related to the perovskite 'O'-phase (associated with the distortion of the [PbI3]- anion) is observed in the island-like sample that we attribute to strain relaxation for this morphology. Moreover, the predominantly radiative recombination dynamics of the continuous-like sample mainly originates from nongeminate electron-hole formation of excitons in the 'O'-phase and the internal dynamics with carrier trapping levels. This observation is in strong contrast to the free exciton recombination dominantly found in the island-like sample.

7.
Sci Rep ; 9(1): 8950, 2019 Jun 20.
Article in English | MEDLINE | ID: mdl-31222059

ABSTRACT

Whilst the different forms of conventional (charge-based) memories are well suited to their individual roles in computers and other electronic devices, flaws in their properties mean that intensive research into alternative, or emerging, memories continues. In particular, the goal of simultaneously achieving the contradictory requirements of non-volatility and fast, low-voltage (low-energy) switching has proved challenging. Here, we report an oxide-free, floating-gate memory cell based on III-V semiconductor heterostructures with a junctionless channel and non-destructive read of the stored data. Non-volatile data retention of at least 104 s in combination with switching at ≤2.6 V is achieved by use of the extraordinary 2.1 eV conduction band offsets of InAs/AlSb and a triple-barrier resonant tunnelling structure. The combination of low-voltage operation and small capacitance implies intrinsic switching energy per unit area that is 100 and 1000 times smaller than dynamic random access memory and Flash respectively. The device may thus be considered as a new emerging memory with considerable potential.

SELECTION OF CITATIONS
SEARCH DETAIL
...