Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Proteomics ; 177: 48-64, 2018 04 15.
Article in English | MEDLINE | ID: mdl-29438850

ABSTRACT

Lignocellulosic plant biomass is the most abundant carbon source in the planet, which makes it a potential substrate for biorefinery. It consists of polysaccharides and other molecules with applications in pharmaceutical, food and feed, cosmetics, paper and textile industries. The exploitation of these resources requires the hydrolysis of the plant cell wall, which is a complex process. Aiming to discover novel fungal natural isolates with lignocellulolytic capacities, a screening for feruloyl esterase activity was performed in samples taken from different metal surfaces. An extracellular enzyme extract from the most promising candidate, the natural isolate Alternaria alternata PDA1, was analyzed. The feruloyl esterase activity of the enzyme extract was characterized, determining the pH and temperature optima (pH 5.0 and 55-60 °C, respectively), thermal stability and kinetic parameters, among others. Proteomic analyses derived from two-dimensional gels allowed the identification and classification of 97 protein spots from the extracellular proteome. Most of the identified proteins belonged to the carbohydrates metabolism group, particularly plant cell wall degradation. Enzymatic activities of the identified proteins (ß-glucosidase, cellobiohydrolase, endoglucanase, ß-xylosidase and xylanase) of the extract were also measured. These findings confirm A. alternata PDA1 as a promising lignocellulolytic enzyme producer. SIGNIFICANCE: Although plant biomass is an abundant material that can be potentially utilized by several industries, the effective hydrolysis of the recalcitrant plant cell wall is not a straightforward process. As this hydrolysis occurs in nature relying almost solely on microbial enzymatic systems, it is reasonable to infer that further studies on lignocellulolytic enzymes will discover new sustainable industrial solutions. The results included in this paper provide a promising fungal candidate for biotechnological processes to obtain added value from plant byproducts and analogous substrates. Moreover, the proteomic analysis of the secretome of a natural isolate of Alternaria sp. grown in the presence of one of the most used vegetal substrates on the biofuels industry (sugar beet pulp) sheds light on the extracellular enzymatic machinery of this fungal plant pathogen, and can be potentially applied to developing new industrial enzymatic tools. This work is, to our knowledge, the first to analyze in depth the secreted enzyme extract of the plant pathogen Alternaria when grown on a lignocellulosic substrate, identifying its proteins by means of MALDI-TOF/TOF mass spectrometry and characterizing its feruloyl esterase, cellulase and xylanolytic activities.


Subject(s)
Alternaria/metabolism , Carboxylic Ester Hydrolases/metabolism , Cell Wall/metabolism , Lignin/metabolism , Alternaria/enzymology , Cell Wall/enzymology , Fungal Proteins/analysis , Hydrolysis , Mitosporic Fungi , Plants/microbiology , Plants/ultrastructure , Proteome/analysis , Proteomics/methods
2.
Metab Eng ; 22: 89-103, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24480587

ABSTRACT

In Penicillium chrysogenum the beta-lactam biosynthetic pathway is compartmentalized. This fact forces the occurrence of transport processes of penicillin-intermediate molecules across cell membranes. Many aspects around this molecular traffic remain obscure but are supposed to involve transmembrane transporter proteins. In the present work, an in-depth study has been developed on a Major Facilitator-type secondary transporter from P. chrysogenum named as PenM. The reduction of penM expression level reached by penM targeted silencing, leads to a decrease in benzylpenicillin production in silenced transformants, especially in SilM-35. On the contrary, the penM overexpression from a high efficiency promoter increases the benzylpenicillin production and the expression of the biosynthetic genes. Moreover, when the silenced strain SilM-35 is cultured under penicillin production conditions with 6-aminopenicillanic acid supplementation, an increase in the benzylpenicillin production proportional to the 6-aminopenicillanic acid availability is observed. By this phenomenon, it can be concluded that due to the penM silencing the benzylpenicillin transport remains intact but the peroxisomal isopenicillin N import results affected. As a culminating result, obtained by the expression of the fluorescent recombinant PenM-DsRed protein, it was determined that PenM is naturally located in P. chrysogenum peroxisomes. In summary, our experimental results suggest that PenM is involved in penicillin production most likely through the translocation of isopenicillin N from the cytosol to the peroxisomal lumen across P. chrysogenum peroxisomal membrane.


Subject(s)
Carrier Proteins/metabolism , Fungal Proteins/metabolism , Penicillins/metabolism , Penicillium chrysogenum/metabolism , Biological Transport, Active/physiology , Carrier Proteins/genetics , Fungal Proteins/genetics , Penicillium chrysogenum/genetics
3.
Metab Eng ; 13(5): 532-43, 2011 Sep.
Article in English | MEDLINE | ID: mdl-21704721

ABSTRACT

The Acremonium chrysogenum cephalosporin biosynthetic genes are divided in two different clusters. The central step of the biosynthetic pathway (epimerization of isopenicillin N to penicillin N) occurs in peroxisomes. We found in the "early" cephalosporin cluster a new ORF encoding a regulatory protein (CefR), containing a nuclear targeting signal and a "Fungal_trans" domain. Targeted inactivation of cefR delays expression of the cefEF gene, increases penicillin N secretion and decreases cephalosporin production. Overexpression of the cefR gene decreased (up to 60%) penicillin N secretion, saving precursors and resulting in increased cephalosporin C production. Northern blot analysis revealed that the CefR protein acts as a repressor of the exporter cefT and exerts a small stimulatory effect over the expression level of cefEF that explains the increased cephalosporin yields observed in transformants overexpressing cefR. In summary, we describe for the first time a modulator of beta-lactam intermediate transporters in A. chrysogenum.


Subject(s)
Acremonium/metabolism , Carrier Proteins/biosynthesis , Cephalosporins/biosynthesis , Fungal Proteins/biosynthesis , Penicillins/metabolism , Acremonium/genetics , Carrier Proteins/genetics , Fungal Proteins/genetics , Gene Knockdown Techniques , Peroxisomes/genetics , Peroxisomes/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...