Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 29
Filter
Add more filters










Publication year range
1.
IEEE/ACM Trans Comput Biol Bioinform ; 20(2): 1188-1199, 2023.
Article in English | MEDLINE | ID: mdl-35536815

ABSTRACT

This paper advances the self-attention mechanism in the standard transformer network specific to the modeling of the protein sequences. We introduce a novel context-window based scaled self-attention mechanism for processing protein sequences that is based on the notion of (i) local context and (ii) large contextual pattern. Both notions are essential to building a good representation for protein sequences. The proposed context-window based scaled self-attention mechanism is further used to build the multi context-window based scaled (MCWS) transformer network for the protein function prediction task at the protein sub-sequence level. Overall, the proposed MCWS transformer network produced improved predictive performances, outperforming existing state-of-the-art approaches by substantial margins. With respect to the standard transformer network, the proposed network produced improvements in F1-score of +2.30% and +2.08% on the biological process (BP) and molecular function (MF) datasets, respectively. The corresponding improvements over the state-of-the-art ProtVecGen-Plus+ProtVecGen-Ensemble approach are +3.38% (BP) and +2.86% (MF). Equally important, robust performances were obtained across protein sequences of different lengths.


Subject(s)
Amino Acid Sequence , Proteins , Software Design , Proteins/chemistry
2.
IEEE/ACM Trans Comput Biol Bioinform ; 19(5): 2685-2696, 2022.
Article in English | MEDLINE | ID: mdl-34185646

ABSTRACT

This paper explores the use of variants of tf-idf-based descriptors, namely length-normalized-tf-idf and log-normalized-tf-idf, combined with a segmentation technique, for efficient modeling of variable-length protein sequences. The proposed solution, ProtVecGen-Ensemble, is an ensemble of three models trained on differently segmented datasets constructed from an input dataset containing complete protein sequences. Evaluations using biological process (BP) and molecular function (MF) datasets demonstrate that the proposed feature set is not only superior to its contemporaries but also produces more consistent results with respect to variation in sequence lengths. Improvements of +6.07% (BP) and +7.56% (MF) over state-of-the-art tf-idf-based MLDA feature set were obtained. The best results were achieved when ProtVecGen-Ensemble was combined with ProtVecGen-Plus - the state-of-the-art method for protein function prediction - resulting in improvements of +8.90% (BP) and +11.28% (MF) over MLDA and +1.49% (BP) and +2.07% (MF) over ProtVecGen-Plus+MLDA. To capture the performance consistency with respect to sequence lengths, we have defined a variance-based metric, with lower values indicating better performance. On this metric, the proposed ProtVecGen-Ensemble+ProtVecGen-Plus framework resulted in reductions of 56.85 percent (BP) and 56.08 percent (MF) over MLDA and 10.37 percent (BP) and 26.48 percent (MF) over ProtVecGenPlus+MLDA.


Subject(s)
Algorithms , Biological Phenomena , Amino Acid Sequence , Proteins/genetics
3.
IEEE/ACM Trans Comput Biol Bioinform ; 19(6): 3307-3316, 2022.
Article in English | MEDLINE | ID: mdl-34784284

ABSTRACT

Suppose we aim to build a phylogeny for a set of taxa X using information from a collection of loci, where each locus offers information for only a fraction of the taxa. The question is whether, based solely on the pattern of data availability, called a taxon coverage pattern, one can determine if the data suffices to construct a reliable phylogeny. The problem can be expressed combinatorially as follows. Let us call a taxon coverage pattern decisive if, for any binary phylogenetic tree T for X, the collection of phylogenetic trees obtained by restricting T to the subset of X covered by each locus uniquely determines T. Here we relate the problem of checking whether a taxon coverage pattern is decisive to a hypergraph coloring problem. Using this connection, we (1) show that checking decisiveness is co-NP complete; (2) obtain lower bounds on the amount of coverage needed to achieve decisiveness; (3) devise an exact algorithm for decisiveness; (4) develop problem reduction rules, and use them to obtain efficient algorithms for inputs with few loci; and (5) devise Boolean satisfiability (SAT) and integer linear programming formulations (ILP) of decisiveness that allow us to analyze data sets that arise in practice. For data sets that are not decisive, we use our SAT and ILP formulations to obtain decisive subsets of the data.


Subject(s)
Algorithms , Programming, Linear , Phylogeny , Models, Genetic
4.
Algorithms Mol Biol ; 16(1): 22, 2021 Dec 04.
Article in English | MEDLINE | ID: mdl-34863219

ABSTRACT

BACKGROUND: A semi-labeled tree is a tree where all leaves as well as, possibly, some internal nodes are labeled with taxa. Semi-labeled trees encompass ordinary phylogenetic trees and taxonomies. Suppose we are given a collection [Formula: see text] of semi-labeled trees, called input trees, over partially overlapping sets of taxa. The agreement problem asks whether there exists a tree [Formula: see text], called an agreement tree, whose taxon set is the union of the taxon sets of the input trees such that the restriction of [Formula: see text] to the taxon set of [Formula: see text] is isomorphic to [Formula: see text], for each [Formula: see text]. The agreement problems is a special case of the supertree problem, the problem of synthesizing a collection of phylogenetic trees with partially overlapping taxon sets into a single supertree that represents the information in the input trees. An obstacle to building large phylogenetic supertrees is the limited amount of taxonomic overlap among the phylogenetic studies from which the input trees are obtained. Incorporating taxonomies into supertree analyses can alleviate this issue. RESULTS: We give a [Formula: see text] algorithm for the agreement problem, where n is the total number of distinct taxa in [Formula: see text], k is the number of trees in [Formula: see text], and [Formula: see text] is the maximum number of children of a node in [Formula: see text]. CONCLUSION: Our algorithm can aid in integrating taxonomies into supertree analyses. Our computational experience with the algorithm suggests that its performance in practice is much better than its worst-case bound indicates.

5.
G3 (Bethesda) ; 10(11): 4013-4026, 2020 11 05.
Article in English | MEDLINE | ID: mdl-32887672

ABSTRACT

Cultivated peanut (Arachis hypogaea) is an important oil, food, and feed crop worldwide. The USDA peanut germplasm collection currently contains 8,982 accessions. In the 1990s, 812 accessions were selected as a core collection on the basis of phenotype and country of origin. The present study reports genotyping results for the entire available core collection. Each accession was genotyped with the Arachis_Axiom2 SNP array, yielding 14,430 high-quality, informative SNPs across the collection. Additionally, a subset of 253 accessions was replicated, using between two and five seeds per accession, to assess heterogeneity within these accessions. The genotypic diversity of the core is mostly captured in five genotypic clusters, which have some correspondence with botanical variety and market type. There is little genetic clustering by country of origin, reflecting peanut's rapid global dispersion in the 18th and 19th centuries. A genetic cluster associated with the hypogaea/aequatoriana/peruviana varieties, with accessions coming primarily from Bolivia, Peru, and Ecuador, is consistent with these having been the earliest landraces. The genetics, phenotypic characteristics, and biogeography are all consistent with previous reports of tetraploid peanut originating in Southeast Bolivia. Analysis of the genotype data indicates an early genetic radiation, followed by regional distribution of major genetic classes through South America, and then a global dissemination that retains much of the early genetic diversity in peanut. Comparison of the genotypic data relative to alleles from the diploid progenitors also indicates that subgenome exchanges, both large and small, have been major contributors to the genetic diversity in peanut.


Subject(s)
Arachis , Genetic Variation , Alleles , Arachis/genetics , Genotype , Phylogeny
6.
Evol Bioinform Online ; 16: 1176934320939943, 2020.
Article in English | MEDLINE | ID: mdl-32694909

ABSTRACT

Protein domains can be regarded as sections of protein sequences capable of folding independently and performing specific functions. In addition to amino-acid level changes, protein sequences can also evolve through domain shuffling events such as domain insertion, deletion, or duplication. The evolution of protein domains can be studied by tracking domain changes in a selected set of species with known phylogenetic relationships. Here, we conduct such an analysis by defining domains as "features" or "descriptors," and considering the species (target + outgroup) as instances or data-points in a data matrix. We then look for features (domains) that are significantly different between the target species and the outgroup species. We study the domain changes in 2 large, distinct groups of plant species: legumes (Fabaceae) and grasses (Poaceae), with respect to selected outgroup species. We evaluate 4 types of domain feature matrices: domain content, domain duplication, domain abundance, and domain versatility. The 4 types of domain feature matrices attempt to capture different aspects of domain changes through which the protein sequences may evolve-that is, via gain or loss of domains, increase or decrease in the copy number of domains along the sequences, expansion or contraction of domains, or through changes in the number of adjacent domain partners. All the feature matrices were analyzed using feature selection techniques and statistical tests to select protein domains that have significant different feature values in legumes and grasses. We report the biological functions of the top selected domains from the analysis of all the feature matrices. In addition, we also perform domain-centric gene ontology (dcGO) enrichment analysis on all selected domains from all 4 feature matrices to study the gene ontology terms associated with the significantly evolving domains in legumes and grasses. Domain content analysis revealed a striking loss of protein domains from the Fanconi anemia (FA) pathway, the pathway responsible for the repair of interstrand DNA crosslinks. The abundance analysis of domains found in legumes revealed an increase in glutathione synthase enzyme, an antioxidant required from nitrogen fixation, and a decrease in xanthine oxidizing enzymes, a phenomenon confirmed by previous studies. In grasses, the abundance analysis showed increases in domains related to gene silencing which could be due to polyploidy or due to enhanced response to viral infection. We provide a docker container that can be used to perform this analysis workflow on any user-defined sets of species, available at https://cloud.docker.com/u/akshayayadav/repository/docker/akshayayadav/protein-domain-evolution-project.

7.
IEEE/ACM Trans Comput Biol Bioinform ; 17(5): 1648-1659, 2020.
Article in English | MEDLINE | ID: mdl-30998479

ABSTRACT

The order of amino acids in a protein sequence enables the protein to acquire a conformation suitable for performing functions, thereby motivating the need to analyze these sequences for predicting functions. Although machine learning based approaches are fast compared to methods using BLAST, FASTA, etc., they fail to perform well for long protein sequences (with more than 300 amino acids). In this paper, we introduce a novel method for construction of two separate feature sets for protein using bi-directional long short-term memory network based on the analysis of fixed 1) single-sized segments and 2) multi-sized segments. The model trained on the proposed feature set based on multi-sized segments is combined with the model trained using state-of-the-art Multi-label Linear Discriminant Analysis (MLDA) features to further improve the accuracy. Extensive evaluations using separate datasets for biological processes and molecular functions demonstrate not only improved results for long sequences, but also significantly improve the overall accuracy over state-of-the-art method. The single-sized approach produces an improvement of +3.37 percent for biological processes and +5.48 percent for molecular functions over the MLDA based classifier. The corresponding numbers for multi-sized approach are +5.38 and +8.00 percent. Combining the two models, the accuracy further improves to +7.41 and +9.21 percent, respectively.


Subject(s)
Deep Learning , Proteins , Sequence Analysis, Protein/methods , Algorithms , Amino Acid Sequence , Computational Biology , Discriminant Analysis , Protein Conformation , Proteins/chemistry , Proteins/classification , Proteins/physiology
8.
Front Plant Sci ; 10: 345, 2019.
Article in English | MEDLINE | ID: mdl-31105714

ABSTRACT

Based on evolutionary, phylogenomic, and synteny analyses of genome sequences for more than a dozen diverse legume species as well as analysis of chromosome counts across the legume family, we conclude that the genus Cercis provides a plausible model for an early evolutionary form of the legume genome. The small Cercis genus is in the earliest-diverging clade in the earliest-diverging legume subfamily (Cercidoideae). The Cercis genome is physically small, and has accumulated mutations at an unusually slow rate compared to other legumes. Chromosome counts across 477 legume genera, combined with phylogenetic reconstructions and histories of whole-genome duplications, suggest that the legume progenitor had 7 chromosomes - as does Cercis. We propose a model in which a legume progenitor, with 7 chromosomes, diversified into species that would become the Cercidoideae and the remaining legume subfamilies; then speciation in the Cercidoideae gave rise to the progenitor of the Cercis genus. There is evidence for a genome duplication in the remaining Cercidoideae, which is likely due to allotetraploidy involving hybridization between a Cercis progenitor and a second diploid species that existed at the time of the polyploidy event. Outside the Cercidoideae, a set of probably independent whole-genome duplications gave rise to the five other legume subfamilies, at least four of which have predominant counts of 12-14 chromosomes among their early-diverging taxa. An earlier study concluded that independent duplications occurred in the Caesalpinioideae, Detarioideae, and Papilionoideae. We conclude that Cercis may be unique among legumes in lacking evidence of polyploidy, a process that has shaped the genomes of all other legumes thus far investigated.

9.
Algorithms Mol Biol ; 12: 7, 2017.
Article in English | MEDLINE | ID: mdl-28331536

ABSTRACT

BACKGROUND: Semi-labeled trees generalize ordinary phylogenetic trees, allowing internal nodes to be labeled by higher-order taxa. Taxonomies are examples of semi-labeled trees. Suppose we are given collection [Formula: see text] of semi-labeled trees over various subsets of a set of taxa. The ancestral compatibility problem asks whether there is a semi-labeled tree that respects the clusterings and the ancestor/descendant relationships implied by the trees in [Formula: see text]. The running time and space usage of the best previous algorithm for testing ancestral compatibility depend on the degrees of the nodes in the trees in [Formula: see text]. RESULTS: We give a algorithm for the ancestral compatibility problem that runs in [Formula: see text] time and uses [Formula: see text] space, where [Formula: see text] is the total number of nodes and edges in the trees in [Formula: see text]. CONCLUSIONS: Taxonomies enable researchers to expand greatly the taxonomic coverage of their phylogenetic analyses. The running time of our method does not depend on the degrees of the nodes in the trees in [Formula: see text]. This characteristic is important when taxonomies-which can have nodes of high degree-are used.

10.
PLoS One ; 10(2): e0117987, 2015.
Article in English | MEDLINE | ID: mdl-25679219

ABSTRACT

Comprehensively sampled phylogenetic trees provide the most compelling foundations for strong inferences in comparative evolutionary biology. Mismatches are common, however, between the taxa for which comparative data are available and the taxa sampled by published phylogenetic analyses. Moreover, many published phylogenies are gene trees, which cannot always be adapted immediately for species level comparisons because of discordance, gene duplication, and other confounding biological processes. A new database, STBase, lets comparative biologists quickly retrieve species level phylogenetic hypotheses in response to a query list of species names. The database consists of 1 million single- and multi-locus data sets, each with a confidence set of 1000 putative species trees, computed from GenBank sequence data for 413,000 eukaryotic taxa. Two bodies of theoretical work are leveraged to aid in the assembly of multi-locus concatenated data sets for species tree construction. First, multiply labeled gene trees are pruned to conflict-free singly-labeled species-level trees that can be combined between loci. Second, impacts of missing data in multi-locus data sets are ameliorated by assembling only decisive data sets. Data sets overlapping with the user's query are ranked using a scheme that depends on user-provided weights for tree quality and for taxonomic overlap of the tree with the query. Retrieval times are independent of the size of the database, typically a few seconds. Tree quality is assessed by a real-time evaluation of bootstrap support on just the overlapping subtree. Associated sequence alignments, tree files and metadata can be downloaded for subsequent analysis. STBase provides a tool for comparative biologists interested in exploiting the most relevant sequence data available for the taxa of interest. It may also serve as a prototype for future species tree oriented databases and as a resource for assembly of larger species phylogenies from precomputed trees.


Subject(s)
Biology/methods , Databases, Genetic , Trees/classification , Trees/genetics , User-Computer Interface
11.
Syst Biol ; 64(2): 325-39, 2015 Mar.
Article in English | MEDLINE | ID: mdl-25540456

ABSTRACT

With the availability of genomic sequence data, there is increasing interest in using genes with a possible history of duplication and loss for species tree inference. Here we assess the performance of both nonprobabilistic and probabilistic species tree inference approaches using gene duplication and loss and coalescence simulations. We evaluated the performance of gene tree parsimony (GTP) based on duplication (Only-dup), duplication and loss (Dup-loss), and deep coalescence (Deep-c) costs, the NJst distance method, the MulRF supertree method, and PHYLDOG, which jointly estimates gene trees and species tree using a hierarchical probabilistic model. We examined the effects of gene tree and species sampling, gene tree error, and duplication and loss rates on the accuracy of phylogenetic estimates. In the 10-taxon duplication and loss simulation experiments, MulRF is more accurate than the other methods when the duplication and loss rates are low, and Dup-loss is generally the most accurate when the duplication and loss rates are high. PHYLDOG performs well in 10-taxon duplication and loss simulations, but its run time is prohibitively long on larger data sets. In the larger duplication and loss simulation experiments, MulRF outperforms all other methods in experiments with at most 100 taxa; however, in the larger simulation, Dup-loss generally performs best. In all duplication and loss simulation experiments with more than 10 taxa, all methods perform better with more gene trees and fewer missing sequences, and they are all affected by gene tree error. Our results also highlight high levels of error in estimates of duplications and losses from GTP methods and demonstrate the usefulness of methods based on generic tree distances for large analyses.


Subject(s)
Classification/methods , Phylogeny , Sequence Analysis, DNA/methods , Computer Simulation , Gene Deletion , Gene Duplication , Sequence Analysis, DNA/standards , Software/standards
12.
Bioinformatics ; 31(3): 432-3, 2015 Feb 01.
Article in English | MEDLINE | ID: mdl-25273112

ABSTRACT

SUMMARY: MulRF is a platform-independent software package for phylogenetic analysis using multi-copy gene trees. It seeks the species tree that minimizes the Robinson-Foulds (RF) distance to the input trees using a generalization of the RF distance to multi-labeled trees. The underlying generic tree distance measure and fast running time make MulRF useful for inferring phylogenies from large collections of gene trees, in which multiple evolutionary processes as well as phylogenetic error may contribute to gene tree discord. MulRF implements several features for customizing the species tree search and assessing the results, and it provides a user-friendly graphical user interface (GUI) with tree visualization. The species tree search is implemented in C++ and the GUI in Java Swing. AVAILABILITY: MulRF's executable as well as sample datasets and manual are available at http://genome.cs.iastate.edu/CBL/MulRF/, and the source code is available at https://github.com/ruchiherself/MulRFRepo. CONTACT: ruchic@ufl.edu SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Subject(s)
Gene Dosage/genetics , Phylogeny , Sequence Analysis, DNA/methods , Software , Algorithms , Computer Simulation , Evolution, Molecular , Humans , Programming Languages
13.
Algorithms Mol Biol ; 9: 16, 2014.
Article in English | MEDLINE | ID: mdl-25061474

ABSTRACT

BACKGROUND: A common problem in phylogenetic analysis is to identify frequent patterns in a collection of phylogenetic trees. The goal is, roughly, to find a subset of the species (taxa) on which all or some significant subset of the trees agree. One popular method to do so is through maximum agreement subtrees (MASTs). MASTs are also used, among other things, as a metric for comparing phylogenetic trees, computing congruence indices and to identify horizontal gene transfer events. RESULTS: We give algorithms and experimental results for two approaches to identify common patterns in a collection of phylogenetic trees, one based on agreement subtrees, called maximal agreement subtrees, the other on frequent subtrees, called maximal frequent subtrees. These approaches can return subtrees on larger sets of taxa than MASTs, and can reveal new common phylogenetic relationships not present in either MASTs or the majority rule tree (a popular consensus method). Our current implementation is available on the web at https://code.google.com/p/mfst-miner/. CONCLUSIONS: Our computational results confirm that maximal agreement subtrees and all maximal frequent subtrees can reveal a more complete phylogenetic picture of the common patterns in collections of phylogenetic trees than maximum agreement subtrees; they are also often more resolved than the majority rule tree. Further, our experiments show that enumerating maximal frequent subtrees is considerably more practical than enumerating ordinary (not necessarily maximal) frequent subtrees.

14.
Algorithms Mol Biol ; 9: 13, 2014.
Article in English | MEDLINE | ID: mdl-24742332

ABSTRACT

BACKGROUND: Deciding whether there is a single tree -a supertree- that summarizes the evolutionary information in a collection of unrooted trees is a fundamental problem in phylogenetics. We consider two versions of this question: agreement and compatibility. In the first, the supertree is required to reflect precisely the relationships among the species exhibited by the input trees. In the second, the supertree can be more refined than the input trees. Testing for compatibility is an NP-complete problem; however, the problem is solvable in polynomial time when the number of input trees is fixed. Testing for agreement is also NP-complete, but it is not known whether it is fixed-parameter tractable. Compatibility can be characterized in terms of the existence of a specific kind of triangulation in a structure known as the display graph. Alternatively, it can be characterized as a chordal graph sandwich problem in a structure known as the edge label intersection graph. No characterization of agreement was known. RESULTS: We present a simple and natural characterization of compatibility in terms of minimal cuts in the display graph, which is closely related to compatibility of splits. We then derive a characterization for agreement. CONCLUSIONS: Explicit characterizations of tree compatibility and agreement are essential to finding practical algorithms for these problems. The simplicity of the characterizations presented here could help to achieve this goal.

15.
Algorithms Mol Biol ; 8(1): 28, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-24180377

ABSTRACT

BACKGROUND: Constructing species trees from multi-copy gene trees remains a challenging problem in phylogenetics. One difficulty is that the underlying genes can be incongruent due to evolutionary processes such as gene duplication and loss, deep coalescence, or lateral gene transfer. Gene tree estimation errors may further exacerbate the difficulties of species tree estimation. RESULTS: We present a new approach for inferring species trees from incongruent multi-copy gene trees that is based on a generalization of the Robinson-Foulds (RF) distance measure to multi-labeled trees (mul-trees). We prove that it is NP-hard to compute the RF distance between two mul-trees; however, it is easy to calculate this distance between a mul-tree and a singly-labeled species tree. Motivated by this, we formulate the RF problem for mul-trees (MulRF) as follows: Given a collection of multi-copy gene trees, find a singly-labeled species tree that minimizes the total RF distance from the input mul-trees. We develop and implement a fast SPR-based heuristic algorithm for the NP-hard MulRF problem.We compare the performance of the MulRF method (available at http://genome.cs.iastate.edu/CBL/MulRF/) with several gene tree parsimony approaches using gene tree simulations that incorporate gene tree error, gene duplications and losses, and/or lateral transfer. The MulRF method produces more accurate species trees than gene tree parsimony approaches. We also demonstrate that the MulRF method infers in minutes a credible plant species tree from a collection of nearly 2,000 gene trees. CONCLUSIONS: Our new phylogenetic inference method, based on a generalized RF distance, makes it possible to quickly estimate species trees from large genomic data sets. Since the MulRF method, unlike gene tree parsimony, is based on a generic tree distance measure, it is appealing for analyses of genomic data sets, in which many processes such as deep coalescence, recombination, gene duplication and losses as well as phylogenetic error may contribute to gene tree discord. In experiments, the MulRF method estimated species trees accurately and quickly, demonstrating MulRF as an efficient alternative approach for phylogenetic inference from large-scale genomic data sets.

16.
Algorithms Mol Biol ; 8(1): 18, 2013 Jul 09.
Article in English | MEDLINE | ID: mdl-23837994

ABSTRACT

BACKGROUND: A multi-labeled tree, or MUL-tree, is a phylogenetic tree where two or more leaves share a label, e.g., a species name. A MUL-tree can imply multiple conflicting phylogenetic relationships for the same set of taxa, but can also contain conflict-free information that is of interest and yet is not obvious. RESULTS: We define the information content of a MUL-tree T as the set of all conflict-free quartet topologies implied by T, and define the maximal reduced form of T as the smallest tree that can be obtained from T by pruning leaves and contracting edges while retaining the same information content. We show that any two MUL-trees with the same information content exhibit the same reduced form. This introduces an equivalence relation among MUL-trees with potential applications to comparing MUL-trees. We present an efficient algorithm to reduce a MUL-tree to its maximally reduced form and evaluate its performance on empirical datasets in terms of both quality of the reduced tree and the degree of data reduction achieved. CONCLUSIONS: Our measure of conflict-free information content based on quartets is simple and topologically appealing. In the experiments, the maximally reduced form is often much smaller than the original tree, yet retains most of the taxa. The reduction algorithm is quadratic in the number of leaves and its complexity is unaffected by the multiplicity of leaf labels or the degree of the nodes.

17.
Algorithms Mol Biol ; 8(1): 11, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-23547777

ABSTRACT

We study a long standing conjecture on the necessary and sufficient conditions for the compatibility of multi-state characters: There exists a function f(r) such that, for any set C of r-state characters, C is compatible if and only if every subset of f(r) characters of C is compatible. We show that for every r≥2, there exists an incompatible set C of Ω(r2)r-state characters such that every proper subset of C is compatible. This improves the previous lower bound of f(r)≥r given by Meacham (1983), and f(4)≥5 given by Habib and To (2011). For the case when r=3, Lam, Gusfield and Sridhar (2011) recently showed that f(3)=3. We give an independent proof of this result and completely characterize the sets of pairwise compatible 3-state characters by a single forbidden intersection pattern.Our lower bound on f(r) is proven via a result on quartet compatibility that may be of independent interest: For every n≥4, there exists an incompatible set Q of Ω(n2) quartets over n labels such that every proper subset of Q is compatible. We show that such a set of quartets can have size at most 3 when n=5, and at most O(n3) for arbitrary n. We contrast our results on quartets with the case of rooted triplets: For every n≥3, if R is an incompatible set of more than n-1 triplets over n labels, then some proper subset of R is incompatible. We show this bound is tight by exhibiting, for every n≥3, a set of n-1 triplets over n taxa such that R is incompatible, but every proper subset of R is compatible.

18.
Article in English | MEDLINE | ID: mdl-22431553

ABSTRACT

A Robinson-Foulds (RF) supertree for a collection of input trees is a tree containing all the species in the input trees that is at minimum total RF distance to the input trees. Thus, an RF supertree is consistent with the maximum number of splits in the input trees. Constructing RF supertrees for rooted and unrooted data is NP-hard. Nevertheless, effective local search heuristics have been developed for the restricted case where the input trees and the supertree are rooted. We describe new heuristics, based on the Edge Contract and Refine (ECR) operation, that remove this restriction, thereby expanding the utility of RF supertrees. Our experimental results on simulated and empirical data sets show that our unrooted local search algorithms yield better supertrees than those obtained from MRP and rooted RF heuristics in terms of total RF distance to the input trees and, for simulated data, in terms of RF distance to the true tree.


Subject(s)
Algorithms , Computational Biology/methods , Phylogeny , Cluster Analysis , Computer Simulation , Databases, Factual
19.
BMC Bioinformatics ; 12 Suppl 1: S14, 2011 Feb 15.
Article in English | MEDLINE | ID: mdl-21342543

ABSTRACT

BACKGROUND: The gene duplication (GD) problem seeks a species tree that implies the fewest gene duplication events across a given collection of gene trees. Solving this problem makes it possible to use large gene families with complex histories of duplication and loss to infer phylogenetic trees. However, the GD problem is NP-hard, and therefore, most analyses use heuristics that lack any performance guarantee. RESULTS: We describe the first integer linear programming (ILP) formulation to solve instances of the gene duplication problem exactly. With simulations, we demonstrate that the ILP solution can solve problem instances with up to 14 taxa. Furthermore, we apply the new ILP solution to solve the gene duplication problem for the seed plant phylogeny using a 12-taxon, 6,084-gene data set. The unique, optimal solution, which places Gnetales sister to the conifers, represents a new, large-scale genomic perspective on one of the most puzzling questions in plant systematics. CONCLUSIONS: Although the GD problem is NP-hard, our novel ILP solution for it can solve instances with data sets consisting of as many as 14 taxa and 1,000 genes in a few hours. These are the largest instances that have been solved to optimally to date. Thus, this work can provide large-scale genomic perspectives on phylogenetic questions that previously could only be addressed by heuristic estimates.


Subject(s)
Gene Duplication , Phylogeny , Plants/genetics , Programming, Linear , Algorithms , Computer Simulation , Genome, Plant , Genomics/methods
20.
BMC Bioinformatics ; 11: 574, 2010 Nov 23.
Article in English | MEDLINE | ID: mdl-21092314

ABSTRACT

BACKGROUND: The ever-increasing wealth of genomic sequence information provides an unprecedented opportunity for large-scale phylogenetic analysis. However, species phylogeny inference is obfuscated by incongruence among gene trees due to evolutionary events such as gene duplication and loss, incomplete lineage sorting (deep coalescence), and horizontal gene transfer. Gene tree parsimony (GTP) addresses this issue by seeking a species tree that requires the minimum number of evolutionary events to reconcile a given set of incongruent gene trees. Despite its promise, the use of gene tree parsimony has been limited by the fact that existing software is either not fast enough to tackle large data sets or is restricted in the range of evolutionary events it can handle. RESULTS: We introduce iGTP, a platform-independent software program that implements state-of-the-art algorithms that greatly speed up species tree inference under the duplication, duplication-loss, and deep coalescence reconciliation costs. iGTP significantly extends and improves the functionality and performance of existing gene tree parsimony software and offers advanced features such as building effective initial trees using stepwise leaf addition and the ability to have unrooted gene trees in the input. Moreover, iGTP provides a user-friendly graphical interface with integrated tree visualization software to facilitate analysis of the results. CONCLUSIONS: iGTP enables, for the first time, gene tree parsimony analyses of thousands of genes from hundreds of taxa using the duplication, duplication-loss, and deep coalescence reconciliation costs, all from within a convenient graphical user interface.


Subject(s)
Genomics/methods , Phylogeny , Software , Algorithms , Databases, Genetic , Evolution, Molecular , Gene Duplication , Genome
SELECTION OF CITATIONS
SEARCH DETAIL
...