Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Rev. argent. microbiol ; 56(1): 5-5, Mar. 2024.
Article in Spanish | LILACS-Express | LILACS | ID: biblio-1559280

ABSTRACT

Resumen En Argentina, el síndrome urémico hemolítico causado por Escherichia coli enterohemorrágica (EHEC) tiene la más alta incidencia del mundo. Las infecciones por EHEC tienen un comportamiento endemoepidémico y causan del 20 al 30% de los síndromes de diarrea sanguinolenta en niños menores de 5 años. En el período 2016-2020, se notificaron 272 nuevos casos por año al Sistema de Vigilancia de Salud Nacional. Múltiples factores son responsables de la alta incidencia de SUH en Argentina, incluyendo la transmisión persona-persona. Con el objetivo de detectar posibles portadores asintomáticos de EHEC, realizamos un estudio preliminar de la frecuencia de anticuerpos antilipopolisacáridos contra los serotipos de EHEC más prevalentes en Argentina. El estudio se realizó con muestras de plasma obtenidas de 61 maestras y maestros de jardines de infantes de 26 instituciones del distrito de José C. Paz, localizado en el área suburbana de la provincia de Buenos Aires, Argentina. El 51% de las muestras presentaron anticuerpos contra los serotipos de lipopolisacáridos O157, O145, O121 y O103; el 6,4% de las muestras positivas tuvieron el isotipo IgM (n=2), el 61,3% el isotipo IgG (n=19) y el 32,3% los isotipos IgM e IgG (n=10). Dado que los anticuerpos antilipopolisacáridos presentan usualmente una duración corta, la detección de IgM específica podría indicar una infección reciente. Además, el alto porcentaje de muestras positivas hallado podría indicar una exposición frecuente a las cepas de EHEC en la cohorte estudiada. Asimismo, la gran población de adultos portadores asintomáticos de estas cepas patógenas podría contribuir al comportamiento endémico, a través de la transmisión persona-persona. El perfeccionamiento de programas educacionales continuos en jardines de infantes podría constituir una medida importante para reducir los casos de síndrome urémico hemolítico, no solo en Argentina, sino también en el mundo.


Abstract In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.

2.
Rev Argent Microbiol ; 56(1): 25-32, 2024.
Article in English | MEDLINE | ID: mdl-37704516

ABSTRACT

In Argentina, hemolytic uremic syndrome (HUS) caused by EHEC has the highest incidence in the world. EHEC infection has an endemo-epidemic behavior, causing 20-30% of acute bloody diarrhea syndrome in children under 5 years old. In the period 2016-2020, 272 new cases per year were notified to the National Health Surveillance System. Multiple factors are responsible for HUS incidence in Argentina including person-to-person transmission. In order to detect possible EHEC carriers, we carried out a preliminary study of the frequency of kindergarten teachers with anti-LPS antibodies against the most prevalent EHEC serotypes in Argentina. We analyzed 61 kindergarten teachers from 26 institutions from José C. Paz district, located in the suburban area of Buenos Aires province, Argentina. Fifty-one percent of the plasma samples had antibodies against O157, O145, O121 and O103 LPS: 6.4% of the positive samples had IgM isotype (n=2), 61.3% IgG isotype (n=19) and 32.3% IgM and IgG (n=10). Given that antibodies against LPS antigens are usually short-lived specific IgM detection may indicate a recent infection. In addition, the high percentage of positive samples may indicate a frequent exposure to EHEC strains in the cohort studied, as well as the existence of a large non-symptomatic population of adults carrying pathogenic strains that could contribute to the endemic behavior through person-to-person transmission. The improvement of continuous educational programs in kindergarten institutions could be a mandatory measure to reduce HUS cases not only in Argentina but also globally.


Subject(s)
Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Hemolytic-Uremic Syndrome , Child , Adult , Humans , Child, Preschool , Lipopolysaccharides , Escherichia coli Infections/epidemiology , Diarrhea/epidemiology , Hemolytic-Uremic Syndrome/epidemiology , Immunoglobulin G , Immunoglobulin M
3.
Front Cell Infect Microbiol ; 13: 1143918, 2023.
Article in English | MEDLINE | ID: mdl-37260706

ABSTRACT

Introduction: Shiga-toxin (Stx) producing Escherichia coli (STEC) O157:H7 is the most frequent serotype associated with hemolytic uremic syndrome (HUS) after gastrointestinal infections. Protection against HUS secondary to STEC infections has been experimentally assayed through the generation of different vaccine formulations. With focus on patients, the strategies have been mainly oriented to inhibit production of Stx or its neutralization. However, few approaches have been intended to block gastrointestinal phase of this disease, which is considered the first step in the pathogenic cascade of HUS. The aim of this work was to assay H7 flagellin as a mucosal vaccine candidate to prevent the systemic complications secondary to E. coli O157:H7 infections. Materials and methods: The cellular and humoral immune response after H7 nasal immunization in mice were studied by the analysis of systemic and intestinal specific antibody production, as well as cytokine production and lymphocyte proliferation against H7 flagellin ex vivo. Results: Immunized mice developed a strong and specific anti-H7 IgG and IgA response, at systemic and mucosal level, as well as a cellular Th1/Th2/Th17 response. H7 induced activation of bone marrow derived dendritic cells in vitro and a significant delayed-type hypersensitivity (DTH) response in immunized mice. Most relevant, immunized mice were completely protected against the challenge with an E. coli O157:H7 virulent strain in vivo, and surviving mice presented high titres of anti-H7 and Stx antibodies. Discussion: These results suggest that immunization avoids HUS outcome and allows to elicit a specific immune response against other virulence factors.


Subject(s)
Communicable Diseases , Escherichia coli Infections , Escherichia coli O157 , Gastrointestinal Diseases , Hemolytic-Uremic Syndrome , Shiga-Toxigenic Escherichia coli , Animals , Mice , Flagellin , Escherichia coli Infections/prevention & control , Immunization , Hemolytic-Uremic Syndrome/prevention & control
4.
Pediatr Nephrol ; 38(3): 739-748, 2023 03.
Article in English | MEDLINE | ID: mdl-35802271

ABSTRACT

BACKGROUND: Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolysis, thrombocytopenia, and thrombus formation leading to tissue injury. HUS is classified according to its etiology as post-diarrheal or atypical HUS. Differential diagnosis of both entities continues to be a challenge for pediatric physicians. METHODS: The aim was to improve the rapid etiological diagnosis of post-diarrheal HUS cases based on the detection of Shiga toxin (Stx)-producing Escherichia coli (STEC) infection by screening of stx1/stx2 and rfbO157 in cultured stools by multiplex PCR, and the additional detection of anti-lipopolysaccharide (anti-LPS) O157, O145, and O121 antibodies by Glyco-iELISA test. In addition, we studied patients' relatives to detect circulating pathogenic strains that could contribute to HUS diagnosis and/or lead to the implementation of measures to prevent dissemination of familial outbreaks. This study describes the diagnosis of 31 HUS patients admitted to Hospital Municipal de Niños Prof Dr Ramón Exeni during the 2017-2020 period. RESULTS: Stool PCR confirmed the diagnosis of STEC associated with HUS in 38.7% of patients (12/31), while anti-LPS serology did in 88.9% (24/27). In those patients in which both methods were carried out (n = 27), a strong association between the results obtained was found. We found that 30.4% of HUS patients had at least one relative positive for STEC. CONCLUSIONS: We could identify 96.3% (26/27) of HUS cases as secondary to STEC infections when both methods (genotyping and serology) were used. The results demonstrated a high circulation of STEC in HUS families and the prevalence of the STEC O157 serotype (83%) in our pediatric cohort. A higher-resolution version of the Graphical abstract is available as Supplementary information.


Subject(s)
Atypical Hemolytic Uremic Syndrome , Escherichia coli Infections , Shiga-Toxigenic Escherichia coli , Child , Humans , Diarrhea/diagnosis , Diarrhea/etiology , Diarrhea/epidemiology , Serogroup , Lipopolysaccharides , Antibodies, Bacterial , Escherichia coli Infections/complications , Escherichia coli Infections/diagnosis , Escherichia coli Infections/epidemiology
5.
Infect Immun ; 89(5)2021 04 16.
Article in English | MEDLINE | ID: mdl-33619029

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) infections can result in a wide range of clinical presentations despite that EHEC strains belong to the O157:H7 serotype, one of the most pathogenic forms. Although pathogen virulence influences disease outcome, we emphasize the concept of host-pathogen interactions, which involve resistance or tolerance mechanisms in the host that determine total host fitness and bacterial virulence. Taking advantage of the genetic differences between mouse strains, we analyzed the clinical progression in C57BL/6 and BALB/c weaned mice infected with an E. coli O157:H7 strain. We carefully analyzed colonization with several bacterial doses, clinical parameters, intestinal histology, and the integrity of the intestinal barrier, as well as local and systemic levels of antibodies to pathogenic factors. We demonstrated that although both strains had comparable susceptibility to Shiga toxin (Stx) and the intestinal bacterial burden was similar, C57BL/6 showed increased intestinal damage, alteration of the integrity of the intestinal barrier, and impaired renal function that resulted in increased mortality. The increased survival rate in the BALB/c strain was associated with an early specific antibody response as part of a tolerance mechanism.


Subject(s)
Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli O157/immunology , Host-Pathogen Interactions , Immune Tolerance , Animals , Disease Susceptibility , Escherichia coli O157/pathogenicity , Host-Pathogen Interactions/immunology , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Shiga Toxin , Species Specificity , Virulence
6.
Clin Sci (Lond) ; 135(3): 575-588, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33496327

ABSTRACT

Hemolytic Uremic Syndrome (HUS), a disease triggered by Shiga toxin (Stx), is characterized by hemolytic anemia, thrombocytopenia and renal failure. The inflammatory response mediated by polymorphonuclear neutrophils (PMNs) and monocytes is essential to HUS onset. Still, the role of anti-inflammatory cytokines is less clear. The deficiency of IL-10, an anti-inflammatory cytokine, leads to severe pathology in bacterial infections but also to beneficial effects in models of sterile injury. The aim of this work was to analyze the role of IL-10 during HUS. Control and IL-10 lacking mice (IL-10-/-) were intravenously injected with Stx type 2 (Stx2) and survival rate was evaluated. PMN and circulating and renal pro- and anti-inflammatory factors were analyzed by FACS and enzyme-linked immunosorbent assay (ELISA) respectively. IL-10-/- mice showed a higher survival associated with lower renal damage reflected by reduced plasma urea and creatinine levels than control mice. Circulating PMN increased at 72 h in both mouse strains accompanied by an up-regulation of CD11b in control mice. In parallel, renal PMN were significantly increased only in control mice after toxin. Plasma TNF-α, IL-6 and corticosterone levels were higher increased in IL-10-/- than control mice. Simultaneously renal TNF-α raised constantly but was accompanied by increased TGF-ß levels in IL-10-/- mice. These results demonstrate that the profile of circulating and renal cytokines after Stx2 differed between strains suggesting that balance of these factors could participate in renal protection. We conclude that IL-10 absence has a protective role in an experimental model of HUS by reducing PMN recruitment into kidney and renal damage, and increasing mice survival.


Subject(s)
Hemolytic-Uremic Syndrome/chemically induced , Interleukin-10/metabolism , Shiga Toxin 2/toxicity , Animals , Corticosterone/blood , Hemolytic-Uremic Syndrome/pathology , Interleukin-10/genetics , Interleukin-6/blood , Kidney/chemistry , Kidney/pathology , Mice, Inbred BALB C , Mice, Knockout , Neutrophils , Survival Rate , Transforming Growth Factor beta , Tumor Necrosis Factor-alpha/blood
7.
Clin Sci (Lond) ; 134(24): 3283-3301, 2020 12 23.
Article in English | MEDLINE | ID: mdl-33346356

ABSTRACT

Host adaptation of pathogens may increase intra- and interspecies transmission. We showed previously that the passage of a clinically isolated enterohemorrhagic Escherichia coli (EHEC) O157 strain (125/99) through the gastrointestinal tract of mice increases its pathogenicity in the same host. In this work, we aimed to elucidate the underlying mechanism(s) involved in the patho-adaptation of the stool-recovered (125RR) strain. We assessed the global transcription profile by microarray and found almost 100 differentially expressed genes in 125RR strain compared with 125/99 strain. We detected an overexpression of Type Three Secretion System (TTSS) proteins at the mRNA and protein levels and demonstrated increased adhesion to epithelial cell lines for the 125RR strain. Additional key attributes of the 125RR strain were: increased motility on semisolid agar, which correlated with an increased fliC mRNA level; reduced Stx2 production at the mRNA and protein levels; increased survival at pH 2.5, as determined by acid resistance assays. We tested whether the overexpression of the LEE-encoded regulator (ler) in trans in the 125/99 strain could recreate the increased pathogenicity observed in the 125RR strain. As anticipated ler overexpression led to increased expression of TTSS proteins and bacterial adhesion to epithelial cells in vitro but also increased mortality and intestinal colonization in vivo. We conclude that this host-adaptation process required changes in several mechanisms that improved EHEC O157 fitness in the new host. The research highlights some of the bacterial mechanisms required for horizontal transmission of these zoonotic pathogens between their animal and human populations.


Subject(s)
Adaptation, Physiological , Cellular Microenvironment , Escherichia coli O157/physiology , Intestines/microbiology , Animals , Bacterial Secretion Systems/genetics , Escherichia coli O157/genetics , Escherichia coli O157/pathogenicity , Female , Gene Expression Regulation, Bacterial , Male , Mice, Inbred C57BL , Phenotype , Virulence
8.
Toxins (Basel) ; 12(1)2020 01 14.
Article in English | MEDLINE | ID: mdl-31947665

ABSTRACT

Enterohemorrhagic Escherichia coli (EHEC) strains are food-borne pathogens that can cause different clinical conditions. Shiga toxin 2a and/or 2c (Stx2)-producing E. coli O157:H7 is the serotype most frequently associated with severe human disease. In this work we analyzed the hypothesis that host cells participate in Stx2 production, cell damage, and inflammation during EHEC infection. With this aim, macrophage-differentiated THP-1 cells and the intestinal epithelial cell line HCT-8 were incubated with E. coli O157:H7. A time course analysis of cellular and bacterial survival, Stx2 production, stx2 transcription, and cytokine secretion were analyzed in both human cell lines. We demonstrated that macrophages are able to internalize and kill EHEC. Simultaneously, Stx2 produced by internalized bacteria played a major role in macrophage death. In contrast, HCT-8 cells were completely resistant to EHEC infection. Besides, macrophages and HCT-8 infected cells produce IL-1ß and IL-8 inflammatory cytokines, respectively. At the same time, bacterial stx2-specific transcripts were detected only in macrophages after EHEC infection. The interplay between bacteria and host cells led to Stx production, triggering of inflammatory response and cell damage, all of which could contribute to a severe outcome after EHEC infections.


Subject(s)
Escherichia coli O157 , Host Microbial Interactions , Immunomodulation/physiology , Shiga Toxins/toxicity , Cell Line , Cytokines , Enterohemorrhagic Escherichia coli , Escherichia coli Infections , Humans , Inflammation , Macrophages
9.
Mol Immunol ; 108: 23-33, 2019 04.
Article in English | MEDLINE | ID: mdl-30776726

ABSTRACT

Membrane expression of fractalkine (CX3CL1)-receptor (CX3CR1) is relevant in monocytes (Mo) because CX3CR1-CX3CL1 interactions might participate on both, homeostatic and pathologic conditions. We have previously demonstrated that CX3CR1 levels are decreased during culture and when Mo are differentiated into dendritic cells, but enhanced when differentiated into macrophages. Regarding soluble factors, lipopolysaccharide (LPS) accelerated the loss of CX3CR1, while interleukin (IL)-10 and Interferon-gamma (IFN-γ) prevented it. However, the comprehensive knowledge about the intracellular pathways that underlay the level of CX3CR1 expression in Mo is still incomplete. In the current work, we studied the effect of anti-inflammatory cytokines (IL-4, IL-13, IL-10), alone or together with IFN- γ on CX3CR1 expression. We found that only IL-10 and IFN-γ separately were able to prevent CX3CR1 down-modulation during culture of human Mo. Besides, Mo incubated with IL-10 plus IFN-γ showed the highest CX3CR1 expression by cell, suggesting cooperation between two different mechanism used by both cytokines. By studying intracellular mechanisms triggered by IL-10 and IFN-γ, we demonstrated that they specifically induced PI3K-dependent serine-phosphorylation of signal transducer and activator of transcription (STAT)3 or STAT1, respectively. Moreover, chemical inhibitors of STAT1 or STAT3 abrogated IFN-γ or IL-10 effects on CX3CR1 expression. Strikingly, only IL-10 increased CX3CR1 mRNA level, as consequence of augmenting mRNA stability. CX3CR1 mRNA increase was PI3K-dependent, supporting the causal link between the action of IL-10 at the CX3CR1 transcript and CX3CR1 protein level on Mo. Thus, both cytokines up-regulate CX3CR1 expression on human Mo by different intracellular mechanisms.


Subject(s)
CX3C Chemokine Receptor 1/metabolism , Interferon-gamma/metabolism , Interleukin-10/metabolism , Monocytes/metabolism , Up-Regulation , CX3C Chemokine Receptor 1/genetics , Humans , Phosphatidylinositol 3-Kinases/metabolism , Phosphorylation , RNA, Messenger/genetics , RNA, Messenger/metabolism , STAT Transcription Factors/metabolism , Serine/metabolism
10.
Vaccine ; 36(13): 1728-1735, 2018 03 20.
Article in English | MEDLINE | ID: mdl-29483033

ABSTRACT

E. coli O157:H7 is a foodborne pathogen responsible for bloody diarrhea, hemorrhagic colitis and hemolytic uremic syndrome (HUS). The objective of the present work was to evaluate the ability of colostral IgG obtained from Stx2-immunized cows to prevent against E. coli O157:H7 infection and Stx2 cytotoxicity. Hyperimmune colostrum (HC) was obtained from cows intramuscularly immunized with inactivated Stx2 or vehicle for controls. Colostral IgG was purified by affinity chromatography. Specific IgG antibodies against Stx2 and bovine lactoferrin (bLF) levels in HC and the corresponding IgG (HC-IgG/bLF) were determined by ELISA. The protective effects of HC-IgG/bLF against Stx2 cytotoxicity and adhesion of E. coli O157:H7 and its Stx2-negative mutant were analyzed in HCT-8 cells. HC-IgG/bLF prevention against E. coli O157:H7 was studied in human colon and rat colon loops. Protection against a lethal dose of E. coli O157:H7 was evaluated in a weaned mice model. HC-IgG/bLF showed high anti-Stx2 titers and high bLF levels that were able to neutralize the cytotoxic effects of Stx2 in vitro and in vivo. Furthermore, HC-IgG/bLF avoided the inhibition of water absorption induced by E. coli O157:H7 in human colon and also the pathogenicity of E. coli O157:H7 and E. coli O157:H7Δstx2 in rat colon loops. Finally, HC-IgG/bLF prevented in a 100% the lethality caused by E. coli O157:H7 in a weaned mice model. Our study suggests that HC-IgG/bLF have protective effects against E. coli O157:H7 infection. These beneficial effects may be due to specific anti-Stx2 neutralizing antibodies in combination with high bLF levels. These results allow us to consider HC-IgG/bLF as a nutraceutical tool which could be used in combination with balanced supportive diets to prevent HUS. However further studies are required before recommendations can be made for therapeutic and clinical applications.


Subject(s)
Antibodies, Bacterial/immunology , Antibodies, Neutralizing/immunology , Cattle Diseases/immunology , Cattle Diseases/microbiology , Escherichia coli Infections/veterinary , Escherichia coli O157/immunology , Lactoferrin/biosynthesis , Shiga Toxin 2/immunology , Animals , Antibodies, Bacterial/biosynthesis , Antibodies, Neutralizing/biosynthesis , Antibody Specificity/immunology , Cattle , Cell Line, Tumor , Colon/immunology , Colon/metabolism , Colon/microbiology , Colon/pathology , Escherichia coli O157/pathogenicity , Female , Hemolytic-Uremic Syndrome/veterinary , Humans , Immunization , Immunoglobulin G/immunology , Male , Mice , Neutralization Tests , Pregnancy , Rats
11.
Pediatr Nephrol ; 33(11): 2057-2071, 2018 11.
Article in English | MEDLINE | ID: mdl-29372302

ABSTRACT

Hemolytic uremic syndrome (HUS) is defined as a triad of noninmune microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. The most frequent presentation is secondary to Shiga toxin (Stx)-producing Escherichia coli (STEC) infections, which is termed postdiarrheal, epidemiologic or Stx-HUS, considering that Stx is the necessary etiological factor. After ingestion, STEC colonize the intestine and produce Stx, which translocates across the intestinal epithelium. Once Stx enters the bloodstream, it interacts with renal endothelial and epithelial cells, and leukocytes. This review summarizes the current evidence about the involvement of inflammatory components as central pathogenic factors that could determine outcome of STEC infections. Intestinal inflammation may favor epithelial leakage and subsequent passage of Stx to the systemic circulation. Vascular damage triggered by Stx promotes not only release of thrombin and increased fibrin concentration but also production of cytokines and chemokines by endothelial cells. Recent evidence from animal models and patients strongly indicate that several immune cells types may participate in HUS physiopathology: neutrophils, through release of proteases and reactive oxygen species (ROS); monocytes/macrophages through secretion of cytokines and chemokines. In addition, high levels of Bb factor and soluble C5b-9 (sC5b-9) in plasma as well as complement factors adhered to platelet-leukocyte complexes, microparticles and microvesicles, suggest activation of the alternative pathway of complement. Thus, acute immune response secondary to STEC infection, the Stx stimulatory effect on different immune cells, and inflammatory stimulus secondary to endothelial damage all together converge to define a strong inflammatory status that worsens Stx toxicity and disease.


Subject(s)
Escherichia coli Infections/immunology , Hemolytic-Uremic Syndrome/immunology , Microvessels/pathology , Shiga-Toxigenic Escherichia coli/immunology , Animals , Complement Pathway, Alternative/immunology , Cytokines/immunology , Cytokines/metabolism , Disease Models, Animal , Endothelial Cells/immunology , Endothelial Cells/pathology , Endothelium, Vascular/cytology , Endothelium, Vascular/immunology , Endothelium, Vascular/pathology , Epithelial Cells/immunology , Epithelial Cells/pathology , Escherichia coli Infections/blood , Escherichia coli Infections/microbiology , Escherichia coli Infections/pathology , Hemolytic-Uremic Syndrome/blood , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/pathology , Humans , Intestinal Mucosa/microbiology , Kidney/blood supply , Kidney/immunology , Kidney/pathology , Microvessels/cytology , Microvessels/immunology , Shiga-Toxigenic Escherichia coli/isolation & purification
12.
Front Microbiol ; 9: 3104, 2018.
Article in English | MEDLINE | ID: mdl-30619183

ABSTRACT

Hemolytic uremic syndrome (HUS), principally caused by shiga toxins (Stxs), is associated with Shiga toxin-producing Escherichia coli (STEC) infections. We previously reported Stx2 expression by host cells in vitro and in vivo. As the genes encoding the two Stx subunits are located in bacteriophage genomes, the aim of the current study was to evaluate the role of bacteriophage induction in HUS development in absence of an E. coli O157:H7 genomic background. Mice were inoculated with a non-pathogenic E. coli strain carrying the lysogenic bacteriophage 933W (C600Φ933W), and bacteriophage excision was induced by an antibiotic. The mice died 72 h after inoculation, having developed pathogenic damage typical of STEC infection. As well as renal and intestinal damage, markers of central nervous system (CNS) injury were observed, including aberrant immunolocalization of neuronal nuclei (NeuN) and increased expression of glial fibrillary acidic protein (GFAP). These results show that bacteriophage 933W without an E. coli O157:H7 background is capable of inducing the pathogenic damage associated with STEC infection. In addition, a novel mouse model was developed to evaluate therapeutic approaches focused on the bacteriophage as a new target.

13.
Toxins (Basel) ; 9(11)2017 10 25.
Article in English | MEDLINE | ID: mdl-29068360

ABSTRACT

Shiga toxin (Stx), produced by Escherichia coli, is the main pathogenic factor of diarrhea-associated hemolytic uremic syndrome (HUS), which is characterized by the obstruction of renal microvasculature by platelet-fibrin thrombi. It is well known that the oxidative imbalance generated by Stx induces platelet activation, contributing to thrombus formation. Moreover, activated platelets release soluble CD40 ligand (sCD40L), which in turn contributes to oxidative imbalance, triggering the release of reactive oxidative species (ROS) on various cellular types. The aim of this work was to determine if the interaction between the oxidative response and platelet-derived sCD40L, as consequence of Stx-induced endothelium damage, participates in the pathogenic mechanism during HUS. Activated human glomerular endothelial cells (HGEC) by Stx2 induced platelets to adhere to them. Although platelet adhesion did not contribute to endothelial damage, high levels of sCD40L were released to the medium. The release of sCD40L by activated platelets was inhibited by antioxidant treatment. Furthermore, we found increased levels of sCD40L in plasma from HUS patients, which were also able to trigger the respiratory burst in monocytes in a sCD40L-dependent manner. Thus, we concluded that platelet-derived sCD40L and the oxidative response are reciprocally stimulated during Stx2-associated HUS. This process may contribute to the evolution of glomerular occlusion and the microangiopathic lesions.


Subject(s)
CD40 Ligand/blood , Endothelial Cells/drug effects , Hemolytic-Uremic Syndrome/blood , Shiga Toxin/toxicity , Cells, Cultured , Child , Child, Preschool , Endothelial Cells/pathology , Female , Hemolytic-Uremic Syndrome/chemically induced , Humans , Infant , Kidney/metabolism , Kidney/pathology , Male , Microvessels , Monocytes/metabolism , Oxidative Stress , Platelet Activation/drug effects , Reactive Oxygen Species/metabolism
14.
Medicina (B Aires) ; 77(3): 185-190, 2017.
Article in English | MEDLINE | ID: mdl-28643674

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Subject(s)
Escherichia coli Infections/prevention & control , Escherichia coli O157/isolation & purification , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/prevention & control , Adult , Argentina/epidemiology , Child , Disease Outbreaks , Electrophoresis , Escherichia coli Infections/epidemiology , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Hemolytic-Uremic Syndrome/blood , Hemolytic-Uremic Syndrome/epidemiology , Humans , Risk Factors , Serotyping , Urban Population
15.
Medicina (B.Aires) ; 77(3): 185-190, jun. 2017. graf
Article in English | LILACS | ID: biblio-894455

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening hemolytic-uremic syndrome (HUS). Despite the magnitude of the social and economic problems caused by HUS, no licensed vaccine or effective therapy is currently available for human use. Prevention of STEC infections continues being the most important measure to reduce HUS incidence. This is especially true for Argentina where HUS incidence among children is extremely high and shows an endemic pattern. The aim of this work was to investigate serologically adult staff of kindergartens in Buenos Aires city and suburban areas in order to detect possible carriers, and to educate personnel about good practices to reduce HUS transmission. We also assessed the microbiological quality of water and meal samples from the same kindergartens. We tested 67 healthy adults, 13 water supplies and 6 meals belonging to 6 public kindergartens. We analysed hand swabs for isolation of STEC and serum samples for the presence of antibodies against Stx and lipopolysaccharide (LPS) of O157 serogroup. We identified 46 Stx2-positive individuals, but only 7 for O157 LPS. No presence of STEC pathogens was detected in hands of staff, water or meal samples.


Las infecciones bacterianas con Escherichia coli productor de toxina Shiga (Stx) (STEC) están implicadas en el desarrollo del síndrome urémico hemolítico (SUH). A pesar de la magnitud del problema social y económico causado por el SUH, actualmente no existe un tratamiento específico o una vacuna eficaz para uso humano. Por lo tanto, la prevención de las infecciones por STEC es la tarea central para reducir la incidencia del SUH. Esto es especialmente cierto para Argentina en donde el SUH muestra un comportamiento endémico y presenta una incidencia extremadamente alta entre los niños. En efecto, la mediana de casos notificados en menores de 5 años para el periodo 2010-2015 fue 306, mientras que la tasa de notificación fue 8.5 casos cada 100 000 menores/año (http://www.msal.gob.ar/images/stories/boletines/boletin_integrado_vigilancia_N335-SE45.pdf). El objetivo de este trabajo fue analizar serológicamente al personal adulto de jardines de infantes de la ciudad de Buenos Aires y el área suburbana con el fin de detectar portadores, y brindarles formación sobre las buenas prácticas para reducir la transmisión de infecciones con STEC y así evitar el SUH. También se evaluó la calidad microbiológica de las muestras de agua y de la comida elaborada en los mismos jardines. Hemos estudiado 67 adultos, a través del hisopado de manos para la búsqueda de STEC y suero para la presencia de anticuerpos contra Stx y el lipopolisacárido (LPS) de serogrupo O157. También se analizaron 13 suministros de agua y 6 muestras de comida pertenecientes a 6 jardines de infantes públicos. Se identificaron 46 individuos positivos para Stx2, pero solo 7 para LPS-O157. No se detectó presencia de patógenos STEC en las muestras de las manos del personal, ni en los reservorios de agua o muestras de comida.


Subject(s)
Humans , Child , Adult , Escherichia coli O157/isolation & purification , Escherichia coli Infections/prevention & control , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/prevention & control , Argentina/epidemiology , Urban Population , Serotyping , Disease Outbreaks , Risk Factors , Electrophoresis , Escherichia coli Infections/microbiology , Escherichia coli Infections/transmission , Escherichia coli Infections/epidemiology , Hemolytic-Uremic Syndrome/blood
16.
Curr Pharm Des ; 22(34): 5294-5299, 2016.
Article in English | MEDLINE | ID: mdl-27356777

ABSTRACT

BACKGROUND: Hemolytic Uremic Syndrome (HUS) caused by infections with Shiga toxin (Stx)-producing E. coli is a life-threatening complication characterized by acute renal failure, thrombocytopenia and hemolytic anemia. Stx is the main pathogenic factor. Therefore, the mouse model by intravenous administration of a single lethal dose of Stx is often used to explore its pathogenic mechanisms. OBJECTIVE: The aim of this work was to develop an alternative mouse model of Stx type 2 (Stx2) intoxication to evaluate new therapeutic strategies. METHODS AND RESULTS: One lethal dose of Stx2 was divided in four daily doses. We observed a dose-dependent toxicity characterized by neutrophilia, leukocytopenia and renal damage. Most importantly, we demonstrated that the polyclonal anti-Stx2 serum was able to protect mice from fatal evolution even when administered together the third dose of Stx2. CONCLUSION: This model would provide an advantage for evaluation of therapeutic strategies. Furthermore, the results presented herein suggest that appropriate treatment with anti-Stx2 agents following the appearance of initial clinical signs may block the ongoing outcome or may alleviate disease in patients who have just been diagnosed with HUS. However, the delay in the onset of therapy would be unsafe.


Subject(s)
Disease Models, Animal , Hemolytic-Uremic Syndrome/chemically induced , Hemolytic-Uremic Syndrome/drug therapy , Shiga Toxin 2/toxicity , Animals , Dose-Response Relationship, Drug , Hemolytic-Uremic Syndrome/pathology , Injections, Intravenous , Mice , Mice, Inbred BALB C , Recombinant Proteins/administration & dosage , Recombinant Proteins/toxicity , Shiga Toxin 2/administration & dosage , Shiga Toxin 2/immunology
17.
J Innate Immun ; 8(4): 400-11, 2016.
Article in English | MEDLINE | ID: mdl-27230920

ABSTRACT

Hemolytic uremic syndrome (HUS), a vascular disease characterized by hemolytic anemia, thrombocytopenia, and acute renal failure, is caused by enterohemorrhagic Shiga toxin (Stx)-producing bacteria, which mainly affect children. Besides Stx, the inflammatory response mediated by neutrophils (PMN) is essential to HUS evolution. PMN can release neutrophil extracellular traps (NET) composed of DNA, histones, and other proteins. Since NET are involved in infectious and inflammatory diseases, the aim of this work was to investigate the contribution of NET to HUS. Plasma from HUS patients contained increased levels of circulating free-DNA and nucleosomes in comparison to plasma from healthy children. Neutrophils from HUS patients exhibited a greater capacity to undergo spontaneous NETosis. NET activated human glomerular endothelial cells, stimulating secretion of the proinflammatory cytokines IL-6 and IL-8. Stx induced PMN activation as judged by its ability to trigger reactive oxygen species production, increase CD11b and CD66b expression, and induce NETosis in PMN from healthy donors. During HUS, NET can contribute to the inflammatory response and thrombosis in the microvasculature and thus to renal failure. Intervention strategies to inhibit inflammatory mechanisms mediated by PMN, such as NETosis, could have a potential therapeutic impact towards amelioration of the severity of HUS.


Subject(s)
Bacterial Infections/immunology , Endothelial Cells/immunology , Extracellular Traps/immunology , Hemolytic-Uremic Syndrome/immunology , Kidney/pathology , Neutrophils/immunology , Shiga Toxin/immunology , Acute Kidney Injury , Anemia, Hemolytic , Apoptosis , Cells, Cultured , Child , Humans , Interleukin-6/metabolism , Interleukin-8/metabolism , Neutrophil Activation , Neutrophils/microbiology , Reactive Oxygen Species/metabolism , Thrombocytopenia
18.
Sci Rep ; 6: 24913, 2016 04 27.
Article in English | MEDLINE | ID: mdl-27118524

ABSTRACT

Shiga toxin (Stx)-producing Escherichia coli (STEC) infections are implicated in the development of the life-threatening Hemolytic Uremic Syndrome (HUS). Despite the magnitude of the social and economic problems caused by STEC infections, no licensed vaccine or effective therapy is presently available for human use. Single chain antibodies (VHH) produced by camelids exhibit several advantages in comparison with conventional antibodies, making them promising tools for diagnosis and therapy. In the present work, the properties of a recently developed immunogen, which induces high affinity and protective antibodies against Stx type 2 (Stx2), were exploited to develop VHHs with therapeutic potential against HUS. We identified a family of VHHs against the B subunit of Stx2 (Stx2B) that neutralize Stx2 in vitro at subnanomolar concentrations. One VHH was selected and was engineered into a trivalent molecule (two copies of anti-Stx2B VHH and one anti-seroalbumin VHH). The resulting molecule presented extended in vivo half-life and high therapeutic activity, as demonstrated in three different mouse models of Stx2-toxicity: a single i.v. lethal dose of Stx2, several i.v. incremental doses of Stx2 and intragastrical STEC infection. This simple antitoxin agent should offer new therapeutic options for treating STEC infections to prevent or ameliorate HUS outcome.


Subject(s)
Antitoxins/isolation & purification , Hemolytic-Uremic Syndrome/therapy , Immunotherapy/methods , Shiga Toxin 2/immunology , Single-Chain Antibodies/isolation & purification , Animals , Antitoxins/therapeutic use , Camelus , Disease Models, Animal , Hemolytic-Uremic Syndrome/diagnosis , Mice , Serologic Tests/methods , Single-Chain Antibodies/therapeutic use , Therapeutics , Treatment Outcome
19.
Antimicrob Agents Chemother ; 60(1): 459-70, 2016 01.
Article in English | MEDLINE | ID: mdl-26525795

ABSTRACT

A subset of Gram-negative bacterial pathogens uses a type III secretion system (T3SS) to open up a conduit into eukaryotic cells in order to inject effector proteins. These modulate pathways to enhance bacterial colonization. In this study, we screened established bioactive compounds for any that could repress T3SS expression in enterohemorrhagic Escherichia coli (EHEC) O157. The ketolides telithromycin and, subsequently, solithromycin both demonstrated repressive effects on expression of the bacterial T3SS at sub-MICs, leading to significant reductions in bacterial binding and actin-rich pedestal formation on epithelial cells. Preincubation of epithelial cells with solithromycin resulted in significantly less attachment of E. coli O157. Moreover, bacteria expressing the T3SS were more susceptible to solithromycin, and there was significant preferential killing of E. coli O157 bacteria when they were added to epithelial cells that had been preexposed to the ketolide. This killing was dependent on expression of the T3SS. Taken together, this research indicates that the ketolide that has accumulated in epithelial cells may traffic back into the bacteria via the T3SS. Considering that neither ketolide induces the SOS response, nontoxic members of this class of antibiotics, such as solithromycin, should be considered for future testing and trials evaluating their use for treatment of EHEC infections. These antibiotics may also have broader significance for treating infections caused by other pathogenic bacteria, including intracellular bacteria, that express a T3SS.


Subject(s)
Anti-Bacterial Agents/pharmacology , Escherichia coli O157/drug effects , Ketolides/pharmacology , Macrolides/pharmacology , Small Molecule Libraries/pharmacology , Triazoles/pharmacology , Type III Secretion Systems/antagonists & inhibitors , Animals , Anti-Bacterial Agents/chemistry , Bacterial Adhesion/drug effects , Caco-2 Cells , Cattle , Cell Line , Drug Discovery , Epithelial Cells/drug effects , Epithelial Cells/microbiology , Escherichia coli O157/genetics , Escherichia coli O157/metabolism , Gene Expression , High-Throughput Screening Assays , Humans , Ketolides/chemistry , Macrolides/chemistry , Microbial Sensitivity Tests , Respiratory Mucosa/drug effects , Respiratory Mucosa/microbiology , Triazoles/chemistry , Type III Secretion Systems/genetics , Type III Secretion Systems/metabolism
20.
Int J Med Microbiol ; 305(8): 910-7, 2015 Dec.
Article in English | MEDLINE | ID: mdl-26456732

ABSTRACT

Shiga toxin-producing Escherichia coli (STEC) is a food-borne pathogen that causes hemorrhagic colitis. Under some circumstances, Shiga toxin (Stx) produced within the intestinal tract enters the bloodstream, leading to systemic complications that may cause the potentially fatal hemolytic-uremic syndrome (HUS). Despite STEC human infection is characterized by acute inflammation of the colonic mucosa, little is known regarding the role of proinflammatory mediators like cysteine leukotrienes (cysLTs) in this pathology. Thus, the aim of this work was to analyze whether leukotriene C4 (LTC4) influences STEC pathogenesis in mice. We report that exogenous LTC4 pretreatment severely affected the outcome of STEC gastrointestinal infection. LTC4-pretreated (LTC4+) and STEC-infected (STEC+) mice showed an increased intestinal damage by histological studies, and a decreased survival compared to LTC4-non-pretreated (LTC4-) and STEC+ mice. LTC4+/STEC+ mice that died after the infection displayed neutrophilia and high urea levels, indicating that the cause of death was related to Stx2-toxicity. Despite the differences observed in the survival between LTC4+ and LTC4- mice after STEC infection, both groups showed the same survival after Stx2-intravenous inoculation. In addition, LTC4 pretreatment increased the permeability of mucosal intestinal barrier, as assessed by FITC-dextran absorption experiments. Altogether these results suggest that LTC4 detrimental effect on STEC infection is related to the increased passage of pathogenic factors to the bloodstream. Finally, we showed that STEC infection per se increases the endogenous LTC4 levels in the gut, suggesting that this inflammatory mediator plays a role in the pathogenicity of STEC infection in mice, mainly by disrupting the mucosal epithelial barrier.


Subject(s)
Disease Susceptibility , Escherichia coli Infections/complications , Hemolytic-Uremic Syndrome/microbiology , Hemolytic-Uremic Syndrome/pathology , Leukotriene C4/metabolism , Shiga-Toxigenic Escherichia coli/pathogenicity , Animals , Disease Models, Animal , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Intestines/pathology , Mice, Inbred BALB C , Survival Analysis
SELECTION OF CITATIONS
SEARCH DETAIL
...