Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Colloids Surf B Biointerfaces ; 209(Pt 1): 112137, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34628126

ABSTRACT

Diabetes is a widely spread disease affecting the quality of life of millions of people around the world and is associated to a higher risk of developing infections in different parts of the body. The reasons why diabetes enhances infection episodes are not entirely clear; in this study our aim was to explore the changes that one of the most frequently pathogenic bacteria undergoes when exposed to hyperglycemia and ketoacidosis conditions. Physical surface properties such as hydrophobicity and surface electrical charge are related to bacterial growth behavior and the ability of Staphylococcus aureus to form biofilms. The addition of glucose made bacteria more negatively charged and with moderate-intermediate hydrophobicity. Ketone bodies increased hydrophobicity to approximately 75% and pathological concentrations hindered some of the bacterial surface charge by decreasing the negative zeta potential of cells. When both components were present, the bacterial physical surface changes were more similar to those observed in ketone bodies, suggesting a preferential adsorption of ketone bodies over glucose because of the more favorable solubility of glucose in water. Glucose diabetic concentrations gave the highest number of bacteria in the stationary phase of growth and provoked an increase in the biofilm slime index of around 400% in relation to the control state. Also, this situation is related with an increase of bacterial coverage. The combination of a high concentration of glucose and ketone bodies, which corresponds to a poorly controlled diabetic situation, appears associated with an early infection phase; increased hydrophobic attractive force and reduced electrostatic repulsion between cells results in better packing of cells within the biofilm and more efficient retention to the host surface. Knowledge of bacterial response in high amount of glucose and ketoacidosis environments can serve as a basis for designing strategies to prevent bacterial adhesion, biofilm formation and, consequently, the development of infections.


Subject(s)
Hyperglycemia , Ketosis , Bacterial Adhesion , Biofilms , Humans , Quality of Life , Staphylococcus aureus , Surface Properties
2.
Appl Environ Microbiol ; 88(3): e0184921, 2022 02 08.
Article in English | MEDLINE | ID: mdl-34878817

ABSTRACT

In this paper, a simple numerical procedure is presented to monitor the growth of Streptococcus sanguinis over time in the absence and presence of propolis, a natural antimicrobial. In particular, it is shown that the real-time decomposition of growth curves obtained through optical density measurements into growth rate and acceleration can be a powerful tool to precisely assess a large range of key parameters (i.e., lag time [t0], starting growth rate [γ0], initial acceleration of the growth [a0], maximum growth rate [γmax], maximum acceleration [amax], and deceleration [amin] of the growth and the total number of cells at the beginning of the saturation phase [Ns]) that can be readily used to fully describe growth over time. Consequently, the procedure presented provides precise data of the time course of the different growth phases and features, which is expected to be relevant, for instance, to thoroughly evaluate the effect of new antimicrobial agents. It further provides insight into predictive microbiology, likely having important implications for assumptions adopted in mathematical models to predict the progress of bacterial growth. IMPORTANCE The new and simple numerical procedure presented in this paper to analyze bacterial growth will possibly allow the identification of true differences in efficacy among antimicrobial drugs for their applications in human health, food security, and the environment, among others. It further provides insight into predictive microbiology, likely helping in the development of proper mathematical models to predict the course of bacterial growth under diverse circumstances.


Subject(s)
Anti-Infective Agents , Acceleration , Anti-Bacterial Agents/pharmacology , Humans , Models, Theoretical , Streptococcus sanguis
3.
Sci Rep ; 11(1): 23860, 2021 12 13.
Article in English | MEDLINE | ID: mdl-34903790

ABSTRACT

Increased bacterial resistance to traditional antimicrobial agents has prompted the use of natural products with antimicrobial properties such as propolis, extensively employed since ancient times. However, the chemical composition of propolis extracts is extremely complex and has been shown to vary depending on the region and season of collection, due to variations in the flora from which the pharmacological substances are obtained, being therefore essential for their antimicrobial activity to be checked before use. For this purpose, we evaluate the in vitro antimicrobial and anti-biofilm activity of a new and promising Spanish ethanolic extract of propolis (SEEP) on Streptococcus mutans and Streptococcus sanguinis, responsible, as dominant 'pioneer' species, for dental plaque. Results reveal that S. sanguinis is more sensitive to SEEP, slowing and retarding its growth considerably with lower concentrations than those needed to produce the same effect in S. mutans. SEEP presents concentration- and time-dependent killing activity and, furthermore, some of the subinhibitory concentrations employed increased biofilm formation even when bacterial growth decreased. Mono and dual-species biofilms were also inhibited by SEEP. Findings obtained clearly show the relevance of using biofilm and subinhibitory concentration models to determine optimal treatment concentrations.


Subject(s)
Anti-Infective Agents/pharmacology , Propolis/pharmacology , Streptococcus mutans/drug effects , Streptococcus sanguis/drug effects , Bacterial Adhesion , Biofilms , Streptococcus mutans/physiology , Streptococcus sanguis/physiology
4.
Colloids Surf B Biointerfaces ; 191: 110996, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32272388

ABSTRACT

Magnesium is currently increasing interest in the field of biomaterials. An extensive bibliography on this material in the last two decades arises from its potential for the development of biodegradable implants. In addition, many researches, motivated by this progress, have analyzed the performance of magnesium in both in vitro and in vivo assays with gram-positive and gram-negative bacteria in a very broad range of conditions. This review explores the extensive literature in recent years on magnesium in biomaterials-related infections, and discusses the mechanisms of the Mg action on bacteria, as well as the competition of Mg2+ and/or synergy with other divalent cations in this subject.


Subject(s)
Anti-Bacterial Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Magnesium/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms/drug effects , Magnesium/chemistry , Microbial Sensitivity Tests , Optical Imaging , Particle Size , Surface Properties
5.
Colloids Surf B Biointerfaces ; 185: 110617, 2020 Jan 01.
Article in English | MEDLINE | ID: mdl-31740326

ABSTRACT

New biocompatible and bioabsorbable materials are currently being developed for bone regeneration. These serve as scaffolding for controlled drug release and prevent bacterial infections. Films of polylactic acid (PLA) polymers that are Mg-reinforced have demonstrated they have suitable properties and bioactive behavior for promoting the osseointegration process. However little attention has been paid to studying whether the degradation process can alter the adhesive physical properties of the biodegradable film and whether this can modify the biofilm formation capacity of pathogens. Moreover, considering that the concentration of Mg and other corrosion products may not be constant during the degradation process, the question that arises is whether these changes can have negative consequences in terms of the bacterial colonization of surfaces. Bacteria are able to react differently to the same compound, depending on its concentration in the medium and can even become stronger when threatened. In this context, physical surface parameters such as hydrophobicity, surface tension and zeta potential of PLA films reinforced with 10% Mg have been determined before and after degradation, as well as the biofilm formation capacity of Staphylococcus epidermidis. The addition of Mg to the films makes them less hydrophobic and the degradation also reduces the hydrophobicity and increases the negative charge of the surface, especially over long periods of time. Early biofilm formation at 8 h is consistent with the physical properties of the films, where we can observe a reduction in the bacterial biofilm formation. However, after 24 h of incubation, the biofilm formation increases significantly on the PLA/Mg films with respect to PLA control. The explosive release of Mg ions and other corrosion products within the first hours were not enough to prevent a greater biofilm formation after this initial time. Consequently, the Mg addition to the polymer matrix had a bacteriostatic effect but not a bactericidal one. Future works should aim to optimize the design and biofunctionality of these promising bioabsorbable composites for a degradation period suitable for the intended application.


Subject(s)
Biofilms/drug effects , Magnesium/pharmacology , Microbial Viability/drug effects , Polyesters/pharmacology , Bacteria/drug effects , Bacteria/ultrastructure , Hydrogen-Ion Concentration , Hydrophobic and Hydrophilic Interactions , Optical Imaging , Static Electricity , Surface Properties , Water/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...