Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Waste Manag ; 172: 245-255, 2023 Dec 01.
Article in English | MEDLINE | ID: mdl-37924600

ABSTRACT

The recovery of humic acids from low-quality compost obtained in municipal solid waste treatment plants provides opportunities for its valorization. This study compares the recovery and properties of the humic acids obtained from municipal mixed waste compost (MMWC) and manure compost. The effects of temperature, time, and KOH concentration on the ratio of humic acids in the extracted liquid and the content of organic carbon of the precipitates were investigated by response surface methodology. Optimal conditions were 30 °C and 24 h for both composts, with a KOH concentration of 0.53 M for MMWC and 0.25 M for manure compost. The manure compost provided a liquid extract richer in humic acids than MMWC (76.6 % vs. 33.7 %), but the precipitates presented similar organic carbon contents (38.1 % vs. 42.4 %). Regarding composition, both humic acids presented higher organic carbon and nitrogen contents than the composts used as feedstock. The extraction and further precipitation of humic acids reduced the concentration of heavy metals. Humic acids from manure compost have a slightly higher average molecular weight (2650 Da) than those from MMWC (1980 Da), while both present similar C/N ratios and degree of aromaticity. Most contaminants of emerging concern present in the original composts were not detected in the humic acids. Thus, it was demonstrated that MMWC constitutes an attractive source of humic acids with properties similar to those obtained from a high-quality compost and, therefore, with potential economic value.


Subject(s)
Composting , Humic Substances , Humic Substances/analysis , Soil , Manure , Carbon
2.
Sci Total Environ ; 806(Pt 4): 150904, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34653470

ABSTRACT

The use of mineral fertilizers in agriculture has significantly increased to support the growing global food demand. Organic fertilizers are produced from renewable waste materials to overcome the drawbacks of inorganic fertilizers. The development of novel production processes of organic fertilizers entails a significant advance towards the circular economy that reincorporates waste materials into the production cycle. In this work, the economic and environmental feasibility of an industrial plant with a treatment capacity of 300 kg/h of organic waste for the production of liquid fertilizers has been performed. Two extraction technologies (conventional and microwave) and two solvents (water and alkaline) have been compared to select the most sustainable and profitable scenario for scaling-up. The extraction process consists of 2 steps: extraction followed by a concentration stage (necessary only if water extraction is applied). The resolution of the mass balances shows that the fertilizer production under alkaline conditions is ten times higher than for water-based extraction. The economic analysis demonstrated that the total investment cost of microwave technology (>3.5 M€) is three times higher compared to the conventional extraction technology (<1.5 M€), mainly due to the higher complexity of the equipment. These facts directly impact the minimum selling price, because the fertilizers obtained by conventional extraction with alkaline solvent would have a lower selling price (about 1 €/L). As for environmental assessment, the indicators show that the environmental impact produced by water-based extraction is higher than alkaline-solvent extraction, mainly due to the necessity of a concentration stage of the liquid extract to meet the requirements of European regulations. In view of the results obtained in the economic and environmental evaluation, it could be concluded that the most favourable scenario for scaling up the production of liquid fertilizers from organic waste is the conventional extraction under alkaline conditions.


Subject(s)
Fertilizers , Microwaves , Agriculture , Environment , Technology
SELECTION OF CITATIONS
SEARCH DETAIL
...