Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
EMBO Rep ; 25(6): 2610-2634, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38698221

ABSTRACT

GABAB receptors (GBRs), the G protein-coupled receptors for GABA, regulate synaptic transmission throughout the brain. A main synaptic function of GBRs is the gating of Cav2.2-type Ca2+ channels. However, the cellular compartment where stable GBR/Cav2.2 signaling complexes form remains unknown. In this study, we demonstrate that the vesicular protein synaptotagmin-11 (Syt11) binds to both the auxiliary GBR subunit KCTD16 and Cav2.2 channels. Through these dual interactions, Syt11 recruits GBRs and Cav2.2 channels to post-Golgi vesicles, thus facilitating assembly of GBR/Cav2.2 signaling complexes. In addition, Syt11 stabilizes GBRs and Cav2.2 channels at the neuronal plasma membrane by inhibiting constitutive internalization. Neurons of Syt11 knockout mice exhibit deficits in presynaptic GBRs and Cav2.2 channels, reduced neurotransmitter release, and decreased GBR-mediated presynaptic inhibition, highlighting the critical role of Syt11 in the assembly and stable expression of GBR/Cav2.2 complexes. These findings support that Syt11 acts as a vesicular scaffold protein, aiding in the assembly of signaling complexes from low-abundance components within transport vesicles. This mechanism enables insertion of pre-assembled functional signaling units into the synaptic membrane.


Subject(s)
Mice, Knockout , Signal Transduction , Synaptotagmins , Animals , Synaptotagmins/metabolism , Synaptotagmins/genetics , Mice , Humans , Neurons/metabolism , Synaptic Transmission , Receptors, GABA-B/metabolism , Receptors, GABA-B/genetics , Presynaptic Terminals/metabolism , Calcium Channels, N-Type/metabolism , Calcium Channels, N-Type/genetics , Golgi Apparatus/metabolism , Protein Binding , HEK293 Cells
2.
Biochem Pharmacol ; : 116176, 2024 Mar 28.
Article in English | MEDLINE | ID: mdl-38555036

ABSTRACT

GABAB receptors (GBRs) are G protein-coupled receptors for GABA, the main inhibitory neurotransmitter in the brain. GBRs regulate fast synaptic transmission by gating Ca2+ and K+ channels via the Gßγ subunits of the activated G protein. It has been demonstrated that auxiliary GBR subunits, the KCTD proteins, shorten onset and rise time and increase desensitization of receptor-induced K+ currents. KCTD proteins increase desensitization of K+ currents by scavenging Gßγ from the channel, yet the mechanism responsible for the rapid activation of K+ currents has remained elusive. In this study, we demonstrate that KCTD proteins preassemble Gßγ at GBRs. The preassembly obviates the need for diffusion-limited G protein recruitment to the receptor, thereby accelerating G protein activation and, as a result, K+ channel activation. Preassembly of Gßγ at the receptor relies on the interaction of KCTD proteins with a loop protruding from the seven-bladed propeller of Gß subunits. The binding site is shared between Gß1 and Gß2, limiting the interaction of KCTD proteins to these particular Gß isoforms. Substituting residues in the KCTD binding site of Gß1 with those from Gß3 hinders the preassembly of Gßγ with GBRs, delays onset and prolongs rise time of receptor-activated K+ currents. The KCTD-Gß interface, therefore, represents a target for pharmacological modulation of channel gating by GBRs.

3.
Elife ; 122023 01 23.
Article in English | MEDLINE | ID: mdl-36688536

ABSTRACT

Amyloid-ß precursor protein (APP) regulates neuronal activity through the release of secreted APP (sAPP) acting at cell surface receptors. APP and sAPP were reported to bind to the extracellular sushi domain 1 (SD1) of GABAB receptors (GBRs). A 17 amino acid peptide (APP17) derived from APP was sufficient for SD1 binding and shown to mimic the inhibitory effect of sAPP on neurotransmitter release and neuronal activity. The functional effects of APP17 and sAPP were similar to those of the GBR agonist baclofen and blocked by a GBR antagonist. These experiments led to the proposal that sAPP activates GBRs to exert its neuronal effects. However, whether APP17 and sAPP influence classical GBR signaling pathways in heterologous cells was not analyzed. Here, we confirm that APP17 binds to GBRs with nanomolar affinity. However, biochemical and electrophysiological experiments indicate that APP17 does not influence GBR activity in heterologous cells. Moreover, APP17 did not regulate synaptic GBR localization, GBR-activated K+ currents, neurotransmitter release, or neuronal activity in vitro or in vivo. Our results show that APP17 is not a functional GBR ligand and indicate that sAPP exerts its neuronal effects through receptors other than GBRs.


Subject(s)
Amyloid beta-Peptides , Amyloid beta-Protein Precursor , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/metabolism , Neurons/metabolism , Neurotransmitter Agents/metabolism , gamma-Aminobutyric Acid/metabolism
4.
Neuropharmacology ; 201: 108833, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34637787

ABSTRACT

The GluN2 subunits of N-methyl-d-aspartate receptors (NMDARs) are key drivers of synaptic plasticity in the brain, where the particular GluN2 composition endows the NMDAR complex with distinct pharmacological and physiological properties. Compared to GluN2A and GluN2B subunits, far less is known about the role of the GluN2D subunit in synaptic plasticity. In this study, we have used a GluN2C/2D selective competitive antagonist, UBP145, in combination with a GluN2D global knockout (GluN2D KO) mouse line to study the contribution of GluN2D-containing NMDARs to short-term potentiation (STP) and long-term potentiation (LTP) in the CA1 region of mouse hippocampal slices. We made several distinct observations: First, GluN2D KO mice have higher levels of LTP compared to wild-type (WT) mice, an effect that was occluded by blockade of GABA receptor-mediated inhibition or by using a strong LTP induction protocol. Second, UBP145 partially inhibited LTP in WT but not GluN2D KO mice. Third, UBP145 inhibited a component of STP, termed STP2, in WT but not GluN2D KO mice. Taken together, these findings suggest an involvement for GluN2D-containing NMDARs in both STP and LTP in mouse hippocampus.


Subject(s)
Hippocampus , Neuronal Plasticity , Receptors, N-Methyl-D-Aspartate , Animals , Hippocampus/physiology , In Vitro Techniques , Long-Term Potentiation/physiology , Mice, Inbred C57BL , Mice, Knockout , Neuronal Plasticity/physiology , Receptors, GABA , Receptors, N-Methyl-D-Aspartate/physiology , Phenanthrenes/pharmacology
5.
Elife ; 102021 04 29.
Article in English | MEDLINE | ID: mdl-33913808

ABSTRACT

The synaptic connection from medial habenula (MHb) to interpeduncular nucleus (IPN) is critical for emotion-related behaviors and uniquely expresses R-type Ca2+ channels (Cav2.3) and auxiliary GABAB receptor (GBR) subunits, the K+-channel tetramerization domain-containing proteins (KCTDs). Activation of GBRs facilitates or inhibits transmitter release from MHb terminals depending on the IPN subnucleus, but the role of KCTDs is unknown. We therefore examined the localization and function of Cav2.3, GBRs, and KCTDs in this pathway in mice. We show in heterologous cells that KCTD8 and KCTD12b directly bind to Cav2.3 and that KCTD8 potentiates Cav2.3 currents in the absence of GBRs. In the rostral IPN, KCTD8, KCTD12b, and Cav2.3 co-localize at the presynaptic active zone. Genetic deletion indicated a bidirectional modulation of Cav2.3-mediated release by these KCTDs with a compensatory increase of KCTD8 in the active zone in KCTD12b-deficient mice. The interaction of Cav2.3 with KCTDs therefore scales synaptic strength independent of GBR activation.


Subject(s)
Calcium Channels, R-Type/metabolism , Cation Transport Proteins/metabolism , Habenula/metabolism , Presynaptic Terminals/metabolism , Receptors, GABA/metabolism , Animals , Calcium Channels, R-Type/genetics , Cation Transport Proteins/genetics , Humans , Intracellular Signaling Peptides and Proteins , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL , Receptors, GABA/genetics , Receptors, GABA-B/genetics , Receptors, GABA-B/metabolism , Synapses/genetics , Synapses/metabolism
6.
Neural Regen Res ; 14(8): 1293-1308, 2019 Aug.
Article in English | MEDLINE | ID: mdl-30964046

ABSTRACT

TWIK-related potassium channels (TREK) belong to a subfamily of the two-pore domain potassium channels family with three members, TREK1, TREK2 and TWIK-related arachidonic acid-activated potassium channels. The two-pore domain potassium channels is the last big family of channels being discovered, therefore it is not surprising that most of the information we know about TREK channels predominantly comes from the study of heterologously expressed channels. Notwithstanding, in this review we pay special attention to the limited amount of information available on native TREK-like channels and real neurons in relation to neuroprotection. Mainly we focus on the role of free fatty acids, lysophospholipids and other neuroprotective agents like riluzole in the modulation of TREK channels, emphasizing on how important this modulation may be for the development of new therapies against neuropathic pain, depression, schizophrenia, epilepsy, ischemia and cardiac complications.

7.
PLoS One ; 13(6): e0199282, 2018.
Article in English | MEDLINE | ID: mdl-29928032

ABSTRACT

Two-pore domain potassium channels (K2P) constitute major candidates for the regulation of background potassium currents in mammalian cells. Channels of the TREK subfamily are also well positioned to play an important role in sensory transduction due to their sensitivity to a large number of physiological and physical stimuli (pH, mechanical, temperature). Following our previous report describing the molecular expression of different K2P channels in the vagal sensory system, here we confirm that TREK channels are functionally expressed in neurons from the mouse nodose ganglion (mNG). Neurons were subdivided into three groups (A, Ah and C) based on their response to tetrodotoxin and capsaicin. Application of the TREK subfamily activator riluzole to isolated mNG neurons evoked a concentration-dependent outward current in the majority of cells from all the three subtypes studied. Riluzole increased membrane conductance and hyperpolarized the membrane potential by approximately 10 mV when applied to resting neurons. The resting potential was similar in all three groups, but C cells were clearly less excitable and showed smaller hyperpolarization-activated currents at -100 mV and smaller sustained currents at -30 mV. Our results indicate that the TREK subfamily of K2P channels might play an important role in the maintenance of the resting membrane potential in sensory neurons of the autonomic nervous system, suggesting its participation in the modulation of vagal reflexes.


Subject(s)
Ion Channel Gating/drug effects , Neurons/metabolism , Nodose Ganglion/cytology , Potassium Channels, Tandem Pore Domain/metabolism , Riluzole/pharmacology , Action Potentials/drug effects , Animals , Capsaicin/pharmacology , Cells, Cultured , Humans , Mice , Neurons/drug effects , Potassium Channels, Tandem Pore Domain/antagonists & inhibitors , Tetrodotoxin/toxicity
8.
Neuropharmacology ; 112(Pt A): 76-83, 2017 01.
Article in English | MEDLINE | ID: mdl-27523302

ABSTRACT

In the CA1 area of the hippocampus N-methyl-d-aspartate receptors (NMDARs) mediate the induction of long-term depression (LTD), short-term potentiation (STP) and long-term potentiation (LTP). All of these forms of synaptic plasticity can be readily studied in juvenile hippocampal slices but the involvement of particular NMDAR subunits in the induction of these different forms of synaptic plasticity is currently unclear. Here, using NVP-AAM077, Ro 25-6981 and UBP145 to target GluN2A-, 2B- and 2D-containing NMDARs respectively, we show that GluN2B-containing NMDARs (GluN2B) are involved in the induction of LTD, STP and LTP in slices prepared from P14 rat hippocampus. A concentration of Ro (1 µM) that selectively blocks GluN2B-containing diheteromers is able to block LTD. It also inhibits a component of STP without affecting LTP. A higher concentration of Ro (10 µM), that also inhibits GluN2A/B triheteromers, blocks LTP. UBP145 selectively inhibits the Ro-sensitive component of STP whereas NVP inhibits LTP. These data are consistent with a role of GluN2B diheretomers in LTD, a role of both GluN2B- and GluN2D- containing NMDARs in STP and a role of GluN2A/B triheteromers in LTP. This article is part of the Special Issue entitled 'Ionotropic glutamate receptors'.


Subject(s)
Hippocampus/physiology , Long-Term Potentiation , Long-Term Synaptic Depression , Receptors, N-Methyl-D-Aspartate/physiology , Animals , Phenols/pharmacology , Piperidines/pharmacology , Quinoxalines/pharmacology , Rats , Rats, Wistar , Receptors, N-Methyl-D-Aspartate/antagonists & inhibitors
9.
J Neurosci ; 36(15): 4313-24, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-27076427

ABSTRACT

The persistently active protein kinase Mζ (PKMζ) has been found to be involved in the formation and maintenance of long-term memory. Most of the studies investigating PKMζ, however, have used either putatively unselective inhibitors or conventional knock-out animal models in which compensatory mechanisms may occur. Here, we overexpressed an active form of PKMζ in rat hippocampus, a structure highly involved in memory formation, and embedded in several neural networks. We investigated PKMζ's influence on synaptic plasticity using electrophysiological recordings of basal transmission, paired pulse facilitation, and LTP and combined this with behavioral cognitive experiments addressing formation and retention of both contextual memory during aversive conditioning and spatial memory during spontaneous exploration. We demonstrate that hippocampal slices overexpressing PKMζ show enhanced basal transmission, suggesting a potential role of PKMζ in postsynaptic AMPAR trafficking. Moreover, the PKMζ-overexpressing slices augmented LTP and this effect was not abolished by protein-synthesis blockers, indicating that PKMζ induces enhanced LTP formation in a protein-synthesis-independent manner. In addition, we found selectively enhanced long-term memory for contextual but not cued fear memory, underlining the theory of the hippocampus' involvement in the contextual aspect of aversive reinforced tasks. Memory for spatial orientation during spontaneous exploration remained unaltered, suggesting that PKMζ may not affect the neural circuits underlying spontaneous tasks that are different from aversive tasks. In this study, using an overexpression strategy as opposed to an inhibitor-based approach, we demonstrate an important modulatory role of PKMζ in synaptic plasticity and selective memory processing. SIGNIFICANCE STATEMENT: Most of the literature investigating protein kinase Mζ (PKMζ) used inhibitors with selectivity that has been called into question or conventional knock-out animal models in which compensatory mechanisms may occur. To avoid these issues, some studies have been done using viral overexpression of PKMζ in different brain structures to show cognitive enhancement. However, electrophysiological experiments were exclusively done in knock-out models or inhibitory studies to show depletion of LTP. There was no study showing the effect of PKMζ overexpression in the hippocampus on behavior and LTP experiments. To our knowledge, this is the first study to combine these aspects with the result of enhanced memory for contextual fear memory and to show enhanced LTP in hippocampal slices overexpressing PKMζ.


Subject(s)
Fear/physiology , Hippocampus/enzymology , Hippocampus/physiology , Long-Term Potentiation/genetics , Memory/physiology , Protein Kinase C/genetics , Protein Kinase C/physiology , Animals , Conditioning, Operant , Cues , Gene Expression Regulation, Enzymologic/genetics , Gene Expression Regulation, Enzymologic/physiology , Genetic Vectors , Male , Neuronal Plasticity/physiology , Orientation/physiology , Protein Kinase C/biosynthesis , Protein Synthesis Inhibitors/pharmacology , Rats , Rats, Wistar , Receptors, AMPA/antagonists & inhibitors , Spatial Memory/physiology , Synaptic Transmission/genetics , Synaptic Transmission/physiology
10.
J Neurosci Res ; 94(3): 266-81, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26629777

ABSTRACT

Tg2576 mice are widely used to study amyloid-dependent synaptic dysfunction related to Alzheimer's disease. However, conflicting data have been reported for these mice with regard to basal transmission as well as the in vitro correlate of memory, long-term potentiation (LTP). Some studies show clear impairments, whereas others report no deficiency. The present study uses hippocampal slices from 3-, 10-, and 15-month-old wild-type (WT) and Tg2576 mice to evaluate synaptic function in each group, including experiments to investigate basal synaptic transmission, short- and long-term plasticity by inducing paired-pulse facilitation, and both early and late LTP. We show that synaptic function remains intact in hippocampal slices from Tg2576 mice at 3 months of age. However, both early and late LTP decline progressively during aging in these mice. This deterioration of synaptic plasticity starts affecting early LTP, ultimately leading to the abolishment of both forms of LTP in 15-month-old animals. In comparison, WT littermates display normal synaptic parameters during aging. Additional pharmacological investigation into the involvement of NMDA receptors and L-type voltage-gated calcium channels in LTP suggests a distinct mechanism of induction among age groups, demonstrating that both early and late LTP are differentially affected by these channels in Tg2576 mice during aging.


Subject(s)
Aging , Alzheimer Disease/pathology , Hippocampus/pathology , Long-Term Potentiation/genetics , Alzheimer Disease/genetics , Amyloid beta-Protein Precursor/genetics , Animals , Biophysics , Disease Models, Animal , Dizocilpine Maleate/pharmacology , Electric Stimulation , Excitatory Amino Acid Antagonists/pharmacology , Female , Humans , In Vitro Techniques , Long-Term Potentiation/drug effects , Mice , Mice, Inbred C57BL , Mice, Transgenic , Mutation/genetics , Presenilin-1/genetics , Synapses/drug effects , Synapses/pathology , Synaptic Transmission/drug effects , Synaptic Transmission/genetics
11.
Synapse ; 69(10): 484-96, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26178667

ABSTRACT

Phosphodiesterase (PDE) inhibitors are currently considered promising therapeutic targets for treatment of cognitive impairment in diseases such as Schizophrenia and Alzheimer's disease. Inhibitors of PDE2A and PDE9A have emerged as potential candidates shown to improve synaptic plasticity and memory function in animals. However, the functional relevance of their putative different localization in the neuron is not understood. Thus, this study aims at elucidating potential presynaptic effects of PDE2A inhibition in comparison to the inhibition of PDE9A. For this purpose, we used paired-pulse facilitation (PPF), a model of short-term synaptic plasticity related to presynaptic function. First, we performed a series of experiments to validate the model in acute rat hippocampal slices using several reference substances including calcium channel blockers, glutamatergic receptor antagonists, and GPCR agonists. Second, we analysed the effect of PDE2A and PDE9A inhibition and their role regulating the influence that the second messengers cAMP and cGMP exert on basal transmission. Our results show that the interplay between the adenylyl cyclase activator forskolin, the soluble guanylyl cyclase activator BAY 41-8543 and the PDE2A inhibitor PF-999 reveals a primarily presynaptic mechanism of action of PDE2A inhibition. On the contrary, inhibition of PDE9A did not alter PPF under similar conditions. In conclusion, these data provide new evidence supporting a role of PDE2A modulating short-term synaptic plasticity. Moreover, this function of PDE2A is suggested to rely on an active modulation of the cAMP hydrolysis as a response to changes in cGMP levels at the presynaptic level.


Subject(s)
CA1 Region, Hippocampal/cytology , Cyclic Nucleotide Phosphodiesterases, Type 2/metabolism , Long-Term Potentiation/physiology , Neurons/physiology , Adenosine/pharmacology , Animals , Cadmium Chloride/pharmacology , Colforsin/pharmacology , Cyclic AMP/metabolism , Cyclic GMP/metabolism , Enzyme Inhibitors/pharmacology , Excitatory Amino Acid Antagonists/pharmacology , Excitatory Postsynaptic Potentials/drug effects , Excitatory Postsynaptic Potentials/physiology , Long-Term Potentiation/drug effects , Male , Morpholines/pharmacology , Neurons/drug effects , Oxadiazoles/pharmacokinetics , Presynaptic Terminals/drug effects , Presynaptic Terminals/physiology , Pyrimidines/pharmacology , Quinoxalines/pharmacokinetics , Quinoxalines/pharmacology , Rats , Rats, Wistar
12.
J Mol Neurosci ; 48(1): 86-96, 2012 Sep.
Article in English | MEDLINE | ID: mdl-22544515

ABSTRACT

Several types of neurons within the central and peripheral somatic nervous system express two-pore-domain potassium (K2P) channels, providing them with resting potassium conductances. We demonstrate that these channels are also expressed in the autonomic nervous system where they might be important modulators of neuronal excitability. We observed strong mRNA expression of members of the TRESK and TREK subfamilies in both the mouse superior cervical ganglion (mSCG) and the mouse nodose ganglion (mNG). Motor mSCG neurons strongly expressed mRNA transcripts for TRESK and TREK-2 subunits, whereas TASK-1 and TASK-2 subunits were only moderately expressed, with only few or very few transcripts for TREK-1 and TRAAK (TRESK ≈ TREK-2 > TASK-2 ≈ TASK-1 > TREK-1 > TRAAK). Similarly, the TRESK and TREK-1 subunits were the most strongly expressed in sensorial mNG neurons, while TASK-1 and TASK-2 mRNAs were moderately expressed, and fewer TREK-2 and TRAAK transcripts were detected (TRESK ≈ TREK-1 > TASK-1 ≈ TASK-2 > TREK-2 > TRAAK). Moreover, cell-attached single-channel recordings showed a major contribution of TRESK and TREK-1 channels in mNG. As the level of TRESK mRNA expression was not statistically different between the ganglia analysed, the distinct expression of TREK-1 and TREK-2 subunits was the main difference observed between these structures. Our results strongly suggest that TRESK and TREK channels are important modulators of the sensorial and motor information flowing through the autonomic nervous system, probably exerting a strong influence on vagal reflexes.


Subject(s)
Autonomic Nervous System/cytology , Autonomic Nervous System/physiology , Motor Neurons/physiology , Potassium Channels, Tandem Pore Domain/physiology , Sensory Receptor Cells/physiology , Animals , Arabidopsis Proteins/metabolism , Cells, Cultured , Intramolecular Transferases/metabolism , Mice , Mice, Inbred Strains , Motor Neurons/cytology , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/physiology , Nodose Ganglion/cytology , Nodose Ganglion/physiology , Patch-Clamp Techniques , Potassium Channels/genetics , Potassium Channels/physiology , Potassium Channels, Tandem Pore Domain/genetics , Reverse Transcriptase Polymerase Chain Reaction , Sensory Receptor Cells/cytology , Superior Cervical Ganglion/cytology , Superior Cervical Ganglion/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...