Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Publication year range
1.
Antibiotics (Basel) ; 10(9)2021 Aug 25.
Article in English | MEDLINE | ID: mdl-34572621

ABSTRACT

The aim of this study was to know the prevalence and severity of COVID-19 in patients treated with long-term macrolides and to describe the factors associated with worse outcomes. A cross-sectional study was conducted in Primary Care setting. Patients with macrolides dispensed continuously from 1 October 2019 to 31 March 2020, were considered. Main outcome: diagnosis of coronavirus disease-19 (COVID-19). Secondary outcomes: symptoms, severity, characteristics of patients, comorbidities, concomitant treatments. A total of 3057 patients met the inclusion criteria. Median age: 73 (64-81) years; 55% were men; 62% smokers/ex-smokers; 56% obese/overweight. Overall, 95% of patients had chronic respiratory diseases and four comorbidities as a median. Prevalence of COVID-19: 4.8%. This was in accordance with official data during the first wave of the pandemic. The most common symptoms were respiratory: shortness of breath, cough, and pneumonia. Additionally, 53% percent of patients had mild/moderate symptoms, 28% required hospital admission, and 19% died with COVID-19. The percentage of patients hospitalized and deaths were 2.6 and 5.8 times higher, respectively, in the COVID-19 group (p < 0.001). There was no evidence of a beneficial effect of long-term courses of macrolides in preventing SARS-CoV-2 infection or the progression to worse outcomes in old patients with underlying chronic respiratory diseases and a high burden of comorbidity.

4.
Free Radic Res ; 43(3): 295-303, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19191109

ABSTRACT

UNLABELLED: Dopamine autoxidation in an oxygenated physiological salt solution (37 degrees C, pH=7.4) mostly occurred in a 2.5 h time period. H(2)O(2) and dopamine quinones were produced during dopamine autoxidation. In partially pre-contracted rat aortic rings, 10-100 microm dopamine induced endothelium-independent contractions and 0.3-1 mm dopamine induced complete, slow-developing endothelium-independent relaxations. Indomethacin and catalase suppressed the endothelium-independent dopamine contractions. Catalase strongly reduced the endothelium-independent dopamine relaxations. Furthermore, 1 mm dopamine for 60 min followed by a 90 min washout period induced the release of lactate dehydrogenase and the complete impairment of ring reactivity to phenylephrine and KCl. Pre-treatment with catalase or glutathione prevented dopamine-induced deleterious effects so that further concentration-response curves to phenylephrine and KCl could be obtained. The phenylephrine potency was maintained in rings pre-treated with glutathione but not in rings pre-treated with catalase. IN CONCLUSION: (1) dopamine is rapidly and non-enzymatically oxidized in physiological solutions, generating H(2)O(2) and quinones; (2) low H(2)O(2) levels increase vascular tone by activating cyclooxygenase; (3) high H(2)O(2) levels cause irreversible relaxations due to unspecific cellular damage; and (4) dopamine quinones cause a specific alteration in the phenylephrine response.


Subject(s)
Dopamine/metabolism , Hydrogen Peroxide/metabolism , Animals , Aorta, Thoracic/drug effects , Aorta, Thoracic/enzymology , Aorta, Thoracic/metabolism , Catalase/pharmacology , Dopamine/chemistry , Dopamine/pharmacology , Female , Humans , Hydrogen Peroxide/chemistry , Hydrogen Peroxide/pharmacology , In Vitro Techniques , Indomethacin/pharmacology , L-Lactate Dehydrogenase/metabolism , Muscle Contraction/drug effects , Oxidants/chemistry , Oxidants/metabolism , Oxidants/pharmacology , Oxidation-Reduction , Oxidative Stress/drug effects , Oxidative Stress/physiology , Potassium Chloride/pharmacology , Rats , Rats, Inbred WKY , Spectrophotometry, Ultraviolet
SELECTION OF CITATIONS
SEARCH DETAIL
...