Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Psicothema ; 30(4): 434-441, 2018 11.
Article in English | MEDLINE | ID: mdl-30353846

ABSTRACT

BACKGROUND: A multivariate extension of the Brown-Forsythe (MBF) procedure can be used for the analysis of partially repeated measure designs (PRMD) when the covariance matrices are arbitrary. However, the MBF procedure requires complete data over time for each subject, which is a significant limitation of this procedure. This article provides the rules for pooling the results obtained after applying the same MBF analysis to each of the imputed datasets of a PRMD. METHOD: Montecarlo methods are used to evaluate the proposed solution (MI-MBF), in terms of control of Type I and Type II errors. For comparative purposes, the MBF analysis based on the complete original dataset (OD-MBF) and the covariance pattern model based on an unstructured matrix (CPM-UN) were studied. RESULTS: Robustness and power results showed that the MI-MBF method performed slightly worse than tests based on CPM-UN when the homogeneity assumption was met, but slightly better when that assumption was not met. We also note that without assuming equality of covariance matrices, little power was sacrificed by using the MI-MBF method in place of the OD-MBF method. CONCLUSIONS: The results of this study suggest that the MI-MBF method performs well and could be of practical use.


Subject(s)
Data Analysis , Statistics as Topic/methods
2.
Front Psychol ; 9: 556, 2018.
Article in English | MEDLINE | ID: mdl-29731731

ABSTRACT

It is practically impossible to avoid losing data in the course of an investigation, and it has been proven that the consequences can reach such magnitude that they could even invalidate the results of the study. This paper describes some of the most likely causes of missing data in research in the field of clinical psychology and the consequences they may have on statistical and substantive inferences. When it is necessary to recover the missing information, analyzing the data can become extremely complex. We summarize the experts' recommendations regarding the most powerful procedures for performing this task, the advantages each one has over the others, the elements that can or should influence our choice, and the procedures that are not a recommended option except in very exceptional cases. We conclude by offering four pieces of advice, on which all the experts agree and to which we must attend at all times in order to proceed with the greatest possible success. Finally, we show the pernicious effects produced by missing data on the statistical result and on the substantive or clinical conclusions. For this purpose we have planned to lose data in different percentage rates under two mechanisms of loss of data, MCAR and MAR in the complete data set of two very different real researchs, and we proceed to analyze the set of the available data, listwise deletion. One study is carried out using a quasi-experimental non-equivalent control group design, and another study using a experimental design completely randomized.

SELECTION OF CITATIONS
SEARCH DETAIL
...