Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 15(15)2022 Jul 29.
Article in English | MEDLINE | ID: mdl-35955174

ABSTRACT

Biomaterials with adequate properties to direct a biological response are essential for orthopedic and dental implants. The surface properties are responsible for the biological response; thus, coatings with biologically relevant properties such as osteoinduction are exciting options to tailor the surface of different bulk materials. Metal oxide coatings such as TiO2, ZrO2, Nb2O5 and Ta2O5 have been suggested as promising for orthopedic and dental implants. However, a comparative study among them is still missing to select the most promising for bone-growth-related applications. In this work, using magnetron sputtering, TiO2, ZrO2, Ta2O5, and Nb2O5 thin films were deposited on Si (100) substrates. The coatings were characterized by Optical Profilometry, Scanning Electron Microscopy, Energy-Dispersive X-ray Spectroscopy, X-ray Photoelectron Spectroscopy, X-ray Diffraction, Water Contact Angle measurements, and Surface Free Energy calculations. The cell adhesion, viability, proliferation, and differentiation toward the osteoblastic phenotype of mesenchymal stem cells plated on the coatings were measured to define the biological response. Results confirmed that all coatings were biocompatible. However, a more significant number of cells and proliferative cells were observed on Nb2O5 and Ta2O5 compared to TiO2 and ZrO2. Nevertheless, Nb2O5 and Ta2O5 seemed to induce cell differentiation toward the osteoblastic phenotype in a longer cell culture time than TiO2 and ZrO2.

2.
Materials (Basel) ; 15(9)2022 Apr 26.
Article in English | MEDLINE | ID: mdl-35591473

ABSTRACT

The microstructural characteristics of biodegradable Mg alloys determine their performance and appropriateness for orthopedic fixation applications. In this work, the effect of the annealing treatment of a Mg-0.7Zn-0.6Ca (ZX11) alloy on the mechanical integrity, corrosive behavior, and biocompatibility-osteoinduction was studied considering two annealing temperatures, 350 and 450 °C. The microstructure showed a recrystallized structure, with a lower number of precipitates, grain size, and stronger basal texture for the ZX11-350 condition than the ZX11-450. The characteristics mentioned above induce a higher long-term degradation rate for the ZX11-450 than the ZX11-350 on days 7th and 15th of immersion. In consequence, the mechanical integrity changes within this period. The increased degradation rate of the ZX11-450 condition reduces 40% the elongation at failure, in contrast with the 16% reduction for the ZX11-350 condition. After that period, the mechanical integrity remained unchanged. No cytotoxic effects were observed for both treatments and significant differentiation of mesenchymal stem cells into the osteoblast phenotype was observed.

3.
J Virol Methods ; 300: 114391, 2022 02.
Article in English | MEDLINE | ID: mdl-34890710

ABSTRACT

Influenza is a relevant problem for public and animal health, with a significant economic impact. In recent years, outbreaks of avian influenza virus have resulted in devastating losses in the poultry industry worldwide, and although its transmission to humans is very rare, there is always a potential risk for an even more severe outbreak. Currently, vaccination is considered the most effective tool for the control and prevention of influenza infections in both humans and animals. The maintenance of animal welfare and the successful implementation of animal health programs depend on the timely administration of vaccines, which must comply with quality specifications indicated by health authorities; for example, the capability to ensure a minimum antibody titer. The production of viral antigens used in these tests can pose a biosafety risk, and some viral strains can be difficult to grow. Therefore, new biotechnological alternatives are required to overcome these disadvantages. In this study, we produced pseudotypes carrying H5 and H7 hemagglutinins from lowly and highly pathogenic avian influenza viruses. These pseudotypes were used in neutralization assays to detect neutralizing antibodies in avian sera, which were confirmed positive by inhibition of the hemagglutination test. Our results showed that the pseudotype neutralization assay is a viable alternative for the detection of neutralizing antibodies, by demonstrating subtype specificity and requiring reduced biosafety requirements. Therefore, it represents a versatile platform that can facilitate technology transfer protocols between laboratories, and an immediate application in serological tools for quality control of veterinary vaccines against avian influenza.


Subject(s)
Influenza Vaccines , Influenza in Birds , Animals , Antibodies, Neutralizing , Antibodies, Viral , Codon , Hemagglutinin Glycoproteins, Influenza Virus/genetics , Influenza in Birds/prevention & control
SELECTION OF CITATIONS
SEARCH DETAIL
...