Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Amino Acids ; 43(2): 897-909, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22101982

ABSTRACT

Nicotinic acetylcholine receptors (nAChRs) are ligand-gated pentameric ion channels that account for the effects of nicotine. Recent genetic studies have highlighted the importance of variants of the CHRNA5/A3/B4 genomic cluster in human nicotine dependence. Among these genetic variants those found in non-coding segments of the cluster may contribute to the pathophysiology of tobacco use through alterations in the expression of these genes. To discern the in vivo effects of the cluster, we generated a transgenic mouse overexpressing the human CHRNA5/A3/B4 cluster using a bacterial artificial chromosome. Transgenic mice showed increased functional α3ß4-nAChRs in brain regions where these subunits are highly expressed under normal physiological conditions. Moreover, they exhibited increased sensitivity to the pharmacological effects of nicotine along with higher activation of the medial habenula and reduced activation of dopaminergic neurons in the ventral tegmental area after acute nicotine administration. Importantly, transgenic mice showed increased acquisition of nicotine self-administration (0.015 mg/kg per infusion) and a differential response in the progressive ratio test. Our study provides the first in vivo evidence of the involvement of the CHRNA5/A3/B4 genomic cluster in nicotine addiction through modifying the activity of brain regions responsible for the balance between the rewarding and the aversive properties of this drug.


Subject(s)
Multigene Family , Nerve Tissue Proteins/genetics , Nicotine/pharmacology , Receptors, Nicotinic/genetics , Tobacco Use Disorder/genetics , Analysis of Variance , Animals , Binding Sites , Cerebral Cortex/diagnostic imaging , Cerebral Cortex/metabolism , Cloning, Molecular , Corpus Striatum/metabolism , Dose-Response Relationship, Drug , Female , Gene Expression , Genetic Engineering , Hippocampus/diagnostic imaging , Hippocampus/metabolism , Humans , Male , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/drug effects , Nerve Tissue Proteins/metabolism , Nicotine/adverse effects , Phenotype , Proto-Oncogene Proteins c-fos/genetics , Proto-Oncogene Proteins c-fos/metabolism , Radionuclide Imaging , Receptors, Nicotinic/metabolism , Seizures/chemically induced , Self Administration
2.
Drug Alcohol Depend ; 122(3): 247-52, 2012 May 01.
Article in English | MEDLINE | ID: mdl-22024278

ABSTRACT

Recent studies have revealed that sequence variants in genes encoding the α3/α5/ß4 nicotinic acetylcholine receptor subunits are associated with nicotine dependence. In this study, we evaluated two specific aspects of executive functioning related to drug addiction (impulsivity and working memory) in transgenic mice over expressing α3/α5/ß4 nicotinic receptor subunits. Impulsivity and working memory were evaluated in an operant delayed alternation task, where mice must inhibit responding between 2 and 8s in order to receive food reinforcement. Working memory was also evaluated in a spontaneous alternation task in an open field. Transgenic mice showed less impulsive-like behavior than wild-type controls, and this behavioral phenotype was related to the number of copies of the transgene. Thus, transgenic Line 22 (16-28 copies) showed a more pronounced phenotype than Line 30 (4-5 copies). Overexpression of these subunits in Line 22 reduced spontaneous alternation behavior suggesting deficits in working memory processing in this particular paradigm. These results reveal the involvement of α3/α5/ß4 nicotinic receptor subunits in working memory and impulsivity, two behavioral traits directly related to the vulnerability to develop nicotine dependence.


Subject(s)
Gene Expression Regulation , Impulsive Behavior/genetics , Impulsive Behavior/metabolism , Nerve Tissue Proteins/biosynthesis , Protein Subunits/biosynthesis , Protein Subunits/genetics , Receptors, Nicotinic/biosynthesis , Animals , Gene Expression Regulation/physiology , Humans , Impulsive Behavior/prevention & control , Male , Memory, Short-Term/physiology , Mice , Mice, Inbred C57BL , Mice, Transgenic , Motor Activity/genetics , Nerve Tissue Proteins/genetics , Neural Inhibition/genetics , Protein Subunits/physiology , Random Allocation , Receptors, Nicotinic/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...