Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Front Immunol ; 14: 1211068, 2023.
Article in English | MEDLINE | ID: mdl-37675104

ABSTRACT

In recent years, the central role of cell bioenergetics in regulating immune cell function and fate has been recognized, giving rise to the interest in immunometabolism, an area of research focused on the interaction between metabolic regulation and immune function. Thus, early metabolic changes associated with the polarization of macrophages into pro-inflammatory or pro-resolving cells under different stimuli have been characterized. Tumor-associated macrophages are among the most abundant cells in the tumor microenvironment; however, it exists an unmet need to study the effect of chemotherapeutics on macrophage immunometabolism. Here, we use a systems biology approach that integrates transcriptomics and metabolomics to unveil the immunometabolic effects of trabectedin (TRB) and lurbinectedin (LUR), two DNA-binding agents with proven antitumor activity. Our results show that TRB and LUR activate human macrophages toward a pro-inflammatory phenotype by inducing a specific metabolic rewiring program that includes ROS production, changes in the mitochondrial inner membrane potential, increased pentose phosphate pathway, lactate release, tricarboxylic acids (TCA) cycle, serine and methylglyoxal pathways in human macrophages. Glutamine, aspartate, histidine, and proline intracellular levels are also decreased, whereas oxygen consumption is reduced. The observed immunometabolic changes explain additional antitumor activities of these compounds and open new avenues to design therapeutic interventions that specifically target the immunometabolic landscape in the treatment of cancer.


Subject(s)
Neoplasms , Humans , Trabectedin/pharmacology , Macrophages , Lactic Acid , Tumor Microenvironment
2.
Nat Commun ; 9(1): 4065, 2018 10 03.
Article in English | MEDLINE | ID: mdl-30283131

ABSTRACT

Mitochondrial protein synthesis requires charging mt-tRNAs with their cognate amino acids by mitochondrial aminoacyl-tRNA synthetases, with the exception of glutaminyl mt-tRNA (mt-tRNAGln). mt-tRNAGln is indirectly charged by a transamidation reaction involving the GatCAB aminoacyl-tRNA amidotransferase complex. Defects involving the mitochondrial protein synthesis machinery cause a broad spectrum of disorders, with often fatal outcome. Here, we describe nine patients from five families with genetic defects in a GatCAB complex subunit, including QRSL1, GATB, and GATC, each showing a lethal metabolic cardiomyopathy syndrome. Functional studies reveal combined respiratory chain enzyme deficiencies and mitochondrial dysfunction. Aminoacylation of mt-tRNAGln and mitochondrial protein translation are deficient in patients' fibroblasts cultured in the absence of glutamine but restore in high glutamine. Lentiviral rescue experiments and modeling in S. cerevisiae homologs confirm pathogenicity. Our study completes a decade of investigations on mitochondrial aminoacylation disorders, starting with DARS2 and ending with the GatCAB complex.


Subject(s)
Cardiomyopathies/enzymology , Cardiomyopathies/genetics , Mitochondrial Diseases/enzymology , Mitochondrial Diseases/genetics , Mutation/genetics , Nitrogenous Group Transferases/genetics , Protein Subunits/genetics , Amino Acid Sequence , Female , Fibroblasts/metabolism , Fibroblasts/pathology , Humans , Infant , Infant, Newborn , Lentivirus/metabolism , Male , Models, Molecular , Myocardium/pathology , Myocardium/ultrastructure , Nitrogenous Group Transferases/chemistry , Nitrogenous Group Transferases/metabolism , Oxidative Phosphorylation , Pedigree , Protein Biosynthesis , Protein Subunits/chemistry , Protein Subunits/metabolism , RNA, Transfer/metabolism , Saccharomyces cerevisiae/metabolism
3.
PLoS One ; 11(1): e0146816, 2016.
Article in English | MEDLINE | ID: mdl-26784702

ABSTRACT

The presence of more than one non-severe pathogenic mutation in the same mitochondrial DNA (mtDNA) molecule is very rare. Moreover, it is unclear whether their co-occurrence results in an additive impact on mitochondrial function relative to single mutation effects. Here we describe the first example of a mtDNA molecule harboring three Leber's hereditary optic neuropathy (LHON)-associated mutations (m.11778G>A, m.14484T>C, m.11253T>C) and the analysis of its genetic, biochemical and molecular characterization in transmitochondrial cells (cybrids). Extensive characterization of cybrid cell lines harboring either the 3 mutations or the single classic m.11778G>A and m.14484T>C mutations revealed no differences in mitochondrial function, demonstrating the absence of a synergistic effect in this model system. These molecular results are in agreement with the ophthalmological characteristics found in the triple mutant patient, which were similar to those carrying single mtDNA LHON mutations.


Subject(s)
DNA, Mitochondrial/genetics , Mutation , Optic Atrophy, Hereditary, Leber/genetics , Adult , Cell Line , Cell Respiration , Female , Humans , Mitochondria/genetics , Mitochondria/metabolism , Optic Atrophy, Hereditary, Leber/metabolism
4.
Biochem J ; 460(1): 91-101, 2014 May 15.
Article in English | MEDLINE | ID: mdl-24579914

ABSTRACT

Translational accuracy depends on the correct formation of aminoacyl-tRNAs, which, in the majority of cases, are produced by specific aminoacyl-tRNA synthetases that ligate each amino acid to its cognate isoaceptor tRNA. Aminoacylation of tRNAGln, however, is performed by various mechanisms in different systems. Since no mitochondrial glutaminyl-tRNA synthetase has been identified to date in mammalian mitochondria, Gln-tRNAGln has to be formed by an indirect mechanism in the organelle. It has been demonstrated that human mitochondria contain a non-discriminating glutamyl-tRNA synthetase and the heterotrimeric enzyme GatCAB (where Gat is glutamyl-tRNAGln amidotransferase), which are able to catalyse the formation of Gln-tRNAGln in vitro. In the present paper we demonstrate that mgatA (mouse GatA) interference in mouse cells produces a strong defect in mitochondrial translation without affecting the stability of the newly synthesized proteins. As a result, interfered cells present an impairment of the oxidative phosphorylation system and a significant increase in ROS (reactive oxygen species) levels. MS analysis of mitochondrial proteins revealed no glutamic acid found in the position of glutamines, strongly suggesting that misaminoacylated Glu-tRNAGln is rejected from the translational apparatus to maintain the fidelity of mitochondrial protein synthesis in mammals.


Subject(s)
Mitochondria/enzymology , Mitochondria/genetics , Nitrogenous Group Transferases/genetics , Nitrogenous Group Transferases/metabolism , Protein Biosynthesis/physiology , Animals , HEK293 Cells , HeLa Cells , Humans , Mice , Oxidative Phosphorylation , Phenotype , Protein Stability , Reactive Oxygen Species/metabolism , Tandem Mass Spectrometry
5.
Biochim Biophys Acta ; 1829(10): 1136-46, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23916463

ABSTRACT

DREF [DRE (DNA replication-related element)-binding factor] controls the transcription of numerous genes in Drosophila, many involved in nuclear DNA (nDNA) replication and cell proliferation, three in mitochondrial DNA (mtDNA) replication and two in mtDNA transcription termination. In this work, we have analysed the involvement of DREF in the expression of the known remaining genes engaged in the minimal mtDNA replication (d-mtDNA helicase) and transcription (the activator d-mtTFB2) machineries and of a gene involved in mitochondrial mRNA translation (d-mtTFB1). We have identified their transcriptional initiation sites and DRE sequences in their promoter regions. Gel-shift and chromatin immunoprecipitation assays demonstrate that DREF interacts in vitro and in vivo with the d-mtDNA helicase and d-mtTFB2, but not with the d-mtTFB1 promoters. Transient transfection assays in Drosophila S2 cells with mutated DRE motifs and truncated promoter regions show that DREF controls the transcription of d-mtDNA helicase and d-mtTFB2, but not that of d-mtTFB1. RNA interference of DREF in S2 cells reinforces these results showing a decrease in the mRNA levels of d-mtDNA helicase and d-mtTFB2 and no changes in those of the d-mtTFB1. These results link the genetic regulation of nuclear DNA replication with the genetic control of mtDNA replication and transcriptional activation in Drosophila.


Subject(s)
DNA Helicases/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/genetics , Gene Expression Regulation , Mitochondria/metabolism , Mitochondrial Proteins/genetics , Transcription Factors/genetics , Animals , Blotting, Western , Cell Nucleus , Chromatin Immunoprecipitation , DNA Helicases/metabolism , Drosophila Proteins/genetics , Electrophoretic Mobility Shift Assay , Luciferases , Mitochondria/genetics , Mitochondrial Proteins/metabolism , Promoter Regions, Genetic , RNA, Messenger/genetics , Real-Time Polymerase Chain Reaction , Reverse Transcriptase Polymerase Chain Reaction , Transcription Factors/metabolism , Transcription Initiation Site
6.
J Biol Chem ; 288(12): 8321-8331, 2013 Mar 22.
Article in English | MEDLINE | ID: mdl-23362268

ABSTRACT

Cytochrome c oxidase (COX) or complex IV of the mitochondrial respiratory chain plays a fundamental role in energy production of aerobic cells. In humans, COX deficiency is the most frequent cause of mitochondrial encephalomyopathies. Human COX is composed of 13 subunits of dual genetic origin, whose assembly requires an increasing number of nuclear-encoded accessory proteins known as assembly factors. Here, we have identified and characterized human CCDC56, an 11.7-kDa mitochondrial transmembrane protein, as a new factor essential for COX biogenesis. CCDC56 shares sequence similarity with the yeast COX assembly factor Coa3 and was termed hCOA3. hCOA3-silenced cells display a severe COX functional alteration owing to a decreased stability of newly synthesized COX1 and an impairment in the holoenzyme assembly process. We show that hCOA3 physically interacts with both the mitochondrial translation machinery and COX structural subunits. We conclude that hCOA3 stabilizes COX1 co-translationally and promotes its assembly with COX partner subunits. Finally, our results identify hCOA3 as a new candidate when screening for genes responsible for mitochondrial diseases associated with COX deficiency.


Subject(s)
Electron Transport Complex IV/metabolism , Membrane Proteins/metabolism , Mitochondria/enzymology , Mitochondrial Proteins/metabolism , Protein Multimerization , Electron Transport Complex IV/physiology , Enzyme Stability , Gene Knockdown Techniques , HeLa Cells , Humans , Membrane Proteins/genetics , Mitochondrial Membranes/metabolism , Mitochondrial Proteins/genetics , Protein Binding , Protein Subunits/metabolism , Protein Subunits/physiology , Proteolysis , RNA, Small Interfering/genetics
7.
Biochem J ; 418(2): 453-62, 2009 Mar 01.
Article in English | MEDLINE | ID: mdl-19032147

ABSTRACT

The DREF [DRE (DNA replication-related element)-binding factor], which regulates the transcription of a group of cell proliferation-related genes in Drosophila, also controls the expression of three genes involved in mtDNA (mitochondrial DNA) replication and maintenance. In the present study, by in silico analysis, we have identified DREs in the promoter region of a gene participating in mtDNA transcription, the DmTTF (Drosophila mitochondrial transcription termination factor). Transient transfection assays in Drosophila S2 cells, with mutated versions of DmTTF promoter region, showed that DREs control DmTTF transcription; moreover, gel-shift and ChIP (chromatin immunoprecipitation) assays demonstrated that the analysed DRE sites interact with DREF in vitro and in vivo. Accordingly, DREF knock-down in S2 cells by RNAi (RNA interference) induced a considerable decrease in DmTTF mRNA level. These results clearly demonstrate that DREF positively controls DmTTF expression. On the other hand, mtRNApol (mitochondrial RNA polymerase) lacks DREs in its promoter and is not regulated in vivo by DREF. In situ RNA hybridization studies showed that DmTTF was transcribed almost ubiquitously throughout all stages of Drosophila embryogenesis, whereas mtRNApol was efficiently transcribed from stages 11-12. Territories where transcription occurred mostly were the gut and Malpighi tubes for DmTTF, and the gut, mesoderm, pharyngeal muscle and Malpighi tubes for mtRNApol. The partial overlapping in the temporal and spatial mRNA expression patterns confirms that transcription of the two genes is differentially regulated during embryogenesis and suggests that DmTTF might play multiple roles in the mtDNA transcription process, for which different levels of the protein with respect to mtRNApol are required.


Subject(s)
DNA-Binding Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/genetics , Mitochondrial Proteins/genetics , Transcription Factors/physiology , Transcriptional Activation , Animals , Base Sequence , Cells, Cultured , Conserved Sequence , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Embryo, Nonmammalian , Gene Expression Regulation, Developmental , Gene Knockdown Techniques , Models, Biological , Molecular Sequence Data , Protein Binding , RNA Polymerase I/physiology , Response Elements , Sequence Homology, Nucleic Acid , Transcription Factors/genetics , Transcription Factors/metabolism , Transcription, Genetic/genetics
8.
Arch Neurol ; 63(1): 107-11, 2006 Jan.
Article in English | MEDLINE | ID: mdl-16401742

ABSTRACT

BACKGROUND: Both dominant and recessive mutations were reported in the gene encoding the mitochondrial (mt) DNA polymerase gamma (POLG) in patients with progressive external ophthalmoplegia (PEO). Phenotypes other than PEO were recently documented in patients with mutations in the POLG gene. OBJECTIVE: To screen patients with mitochondrial disease and multiple mtDNA deletions in muscle for mutations in the coding regions of the POLG, PEO1, and SLC25A4 genes. DESIGN: To identify the underlying molecular defect in a group of patients with multiple mtDNA deletions comparing their molecular genetic findings with those of healthy controls. PATIENTS: Twenty-four patients (16 men and 8 women) diagnosed with mitochondrial disease and having multiple mtDNA deletions in muscle by Southern blot analysis. Thirteen patients had PEO; 2 had PEO alone, 4 had PEO and myopathy, and 5 had PEO and multisystem involvement. Four patients had multisystem disease without PEO. The remaining 9 patients had isolated myopathy. DNA from 100 healthy individuals was also studied. RESULTS: No mutation was identified in the PEO1 or SLC25A4 genes. Nine POLG mutations were observed in 6 of 24 patients. Four novel mutations were detected and mapped in the linker region (M603L) and in the pol domain of the enzyme (R853W; D1184N; R1146C). Five patients with PEO had mutations: 2 were compound heterozygotes, 1 was homozygous, and another showed a mutation in a single allele. The remaining patient also showed a sole mutation and had an unusual phenotype lacking ocular involvement. CONCLUSIONS: POLG molecular defects were found in 25% of our patients with multiple mtDNA deletions and mitochondrial disease. The uncommon phenotype found in 1 of these patients stresses the clinical variability of patients harboring POLG mutations. Molecular studies in the POLG gene should be addressed in patients with mitochondrial disease, particularly in those with PEO, and multiple mtDNA deletions.


Subject(s)
DNA, Mitochondrial/genetics , DNA-Directed DNA Polymerase/genetics , Mutation , Ophthalmoplegia, Chronic Progressive External/genetics , Phenotype , Adenine Nucleotide Translocator 1/genetics , Adult , Aged , Animals , Blotting, Southwestern/methods , DNA Helicases , DNA Polymerase gamma , DNA Primase/genetics , Female , Humans , Male , Middle Aged , Mitochondria, Muscle/genetics , Mitochondrial Proteins , Sequence Alignment , Spain
SELECTION OF CITATIONS
SEARCH DETAIL
...