Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 138(5): 1622-9, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26771052

ABSTRACT

Bis(p-methoxyphenyl)carbene is the first carbene that at cryogenic temperatures can be isolated in both its lowest energy singlet and triplet states. At 3 K, both states coexist indefinitely under these conditions. The carbene is investigated in argon matrices by IR, UV-vis, and X-band EPR spectroscopy and in MTHF glasses by W-band EPR and Q-band ENDOR spectroscopy. UV (365 nm) irradiation of the system results in formation of predominantly the triplet carbene, whereas visible (450 nm) light shifts the photostationary equilibrium toward the singlet state. Upon annealing at higher temperatures (>10 K), the triplet is converted to the singlet; however, cooling back to 3 K does not restore the triplet. Therefore, depending on matrix temperature and irradiation conditions, matrices containing predominantly the triplet or singlet carbene can be generated. Controlling the magnetic and chemical properties of carbenes by using light of different wavelengths might be of general interest for applications such as information storage and radical-initiated polymerization processes.

2.
J Am Chem Soc ; 138(5): 1689-97, 2016 Feb 10.
Article in English | MEDLINE | ID: mdl-26762326

ABSTRACT

The interactions between diphenylcarbene DPC and the halogen bond donors CF3I and CF3Br were investigated using matrix isolation spectroscopy (IR, UV-vis, and EPR) in combination with QM and QM/MM calculations. Both halogen bond donors CF3X form very strong complexes with the singlet state of DPC, but only weakly interact with triplet DPC. This results in a switching of the spin state of DPC, the singlet complexes becoming more stable than the triplet complexes. CF3I forms a second complex (type II) with DPC that is thermodynamically slightly more stable. Calculations predict that in this second complex the DPC···I distance is shorter than the F3C···I distance, whereas in the first (type I) complex the DPC···I distance is, as expected, longer. CF3Br only forms the type I complex. Upon irradiation I or Br, respectively, are transferred to the DPC carbene center and radical pairs are formed. Finally, on annealing, the formal C-X insertion product of DPC is observed. Thus, halogen bonding is a powerful new principle to control the spin state of reactive carbenes.

3.
Angew Chem Int Ed Engl ; 54(9): 2656-60, 2015 Feb 23.
Article in English | MEDLINE | ID: mdl-25656782

ABSTRACT

The fluorenyl cation is a textbook example for a 4π antiaromatic cation. However, contrasting results have been published on how the annelated benzene rings compensate the destabilizing effect of the 4π antiaromatic five-membered ring in its core. Whereas previous attempts to synthesize this cation in superacidic media resulted in undefined polymeric material only, we herein report that it can be generated and isolated in amorphous water ice at temperatures below 30 K by photolysis of diazofluorene. Under these conditions, the fluorenylidene is protonated by water to give the fluorenyl cation, which could be characterized spectroscopically. Its absorption in the visible-light range matches that previously obtained by ultrafast absorption spectroscopy, and furthermore, its IR spectrum could be recorded. The IR bands in amorphous ice very nicely match predictions from DFT and DFT/MM calculations, suggesting the absence of strong interactions between the cation and surrounding water molecules.

4.
J Am Chem Soc ; 136(44): 15625-30, 2014 Nov 05.
Article in English | MEDLINE | ID: mdl-25236711

ABSTRACT

Diphenylcarbene (DPC) shows a triplet ground-state lying approximately 3 kcal/mol below the lowest singlet state. Under the conditions of matrix isolation at 25 K, DPC reacts with single water molecules embedded in solid argon and switches its ground state from triplet to singlet by forming a strong hydrogen bond. The complex between DPC and water is only metastable, and even at 3 K the carbene center slowly inserts into the OH bond of water to form benzhydryl alcohol via quantum chemical tunneling. Surprisingly, if DPC is generated in amorphous water ice at 3 K, it is protonated instantaneously to give the benzhydryl cation. Under these conditions, the benzhydryl cation is stable, and warming to temperatures above 50 K is required to produce benzhydryl alcohol. Thus, for the first time, a highly electrophilic and extremely reactive secondary carbenium ion can be isolated in a neutral, nucleophilic environment avoiding superacidic conditions.

5.
J Phys Chem B ; 117(37): 10785-91, 2013 Sep 19.
Article in English | MEDLINE | ID: mdl-24011400

ABSTRACT

Two novel cyclo(Boc-Cys-Pro-Leu-Cys-OMe) peptides 1 and 2 containing the enantiomeric amino acids d-Leu and l-Leu, respectively, were synthesized to investigate the effect of chiral centers on peptide conformations. By combining a variety of experimental techniques (X-ray crystallography, 2D NMR spectroscopy, temperature-dependent (1)H NMR and IR spectroscopy, and UV-CD spectroscopy) with replica exchange molecular dynamics (REMD) techniques and quantum mechanics/molecular dynamics (QM/MM) calculations, we establish that the stereochemistry of just one residue can noticeably influence the properties of the whole peptide and rationalize the origins of this effect, with potential implications for the rational design of peptides of chemical and biological relevance.


Subject(s)
Peptides, Cyclic/chemistry , Circular Dichroism , Crystallography, X-Ray , Magnetic Resonance Spectroscopy/methods , Models, Molecular , Molecular Dynamics Simulation , Protein Conformation , Quantum Theory , Spectroscopy, Fourier Transform Infrared , Stereoisomerism , Temperature
6.
Magn Reson Chem ; 50(5): 364-71, 2012 May.
Article in English | MEDLINE | ID: mdl-22499151

ABSTRACT

The Growth Hormone Releasing Hexapeptide, GHRP-6 was the first of a family of synthetic peptides that enhance the release of the Growth Hormone by the pituitary gland in a dose-dependent manner. Since its discovery, it has been used as a benchmark and starting point in numerous researches aiming to obtain new drugs. Complete resonance assignment of GHRP-6 NMR spectra in both open and cyclic forms are reported, showing some differences to random coil chemical shifts. Connectivities observed in the ROESY spectra indicate spatial proximity between the aromatic residues side-chains in both molecules, as well as between residues DPhe5 and Lys6 sidechains. An ensemble of 10 structures was generated for each one of the molecules, showing RMSD values indicative of nonrandom structures. Molecular Dynamics simulations, both with and without explicit solvent, were carried out for GHRP-6 and its cyclic analogue. Conformational analysis performed on the trajectories showed a nonrandom structure with a well preserved backbone. The presence of geometrical patterns resembling those typical of π-π interactions in both peptides, suggest that this kind of interactions may be relevant for the biological activity of GHRP-6. Same conclusion can be drawn from the spatial proximity of residues DPhe5 and Lys6 sidechains.


Subject(s)
Magnetic Resonance Spectroscopy , Models, Molecular , Molecular Dynamics Simulation , Oligopeptides/chemistry , Molecular Structure
7.
Dalton Trans ; (38): 7870-2, 2009 Oct 14.
Article in English | MEDLINE | ID: mdl-19771345

ABSTRACT

Gold nanoparticles capped with a cis-(4-aminothiophenol)bis(bipyridyl)(chloro)ruthenium(II) complex that are able to coordinate nitric oxide, become fluorescent and then liberate it by photolabilization when irradiated at 430 nm is reported.


Subject(s)
Fluorescent Dyes/chemistry , Gold/chemistry , Metal Nanoparticles/chemistry , Nitric Oxide/chemistry , Organometallic Compounds/chemistry , Photochemical Processes , Spectrometry, Fluorescence
SELECTION OF CITATIONS
SEARCH DETAIL
...