Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Clin Med ; 10(17)2021 Sep 06.
Article in English | MEDLINE | ID: mdl-34501467

ABSTRACT

BACKGROUND: Immunomodulatory drugs have been used in patients with severe COVID-19. The objective of this study was to evaluate the effects of two different strategies, based either on an interleukin-1 inhibitor, anakinra, or on a JAK inhibitor, such as baricitinib, on the survival of patients hospitalized with COVID-19 pneumonia. METHODS: Individuals admitted to two hospitals because of COVID-19 were included if they fulfilled the clinical, radiological, and laboratory criteria for moderate-to-severe disease. Patients were classified according to the first immunomodulatory drug prescribed: anakinra or baricitinib. All subjects were concomitantly treated with corticosteroids, in addition to standard care. The main outcomes were the need for invasive mechanical ventilation (IMV) and in-hospital death. Statistical analysis included propensity score matching and Cox regression model. RESULTS: The study subjects included 125 and 217 individuals in the anakinra and baricitinib groups, respectively. IMV was required in 13 (10.4%) and 10 (4.6%) patients, respectively (p = 0.039). During this period, 22 (17.6%) and 36 (16.6%) individuals died in both groups (p = 0.811). Older age, low functional status, high comorbidity, need for IMV, elevated lactate dehydrogenase, and use of a high flow of oxygen at initially were found to be associated with worse clinical outcomes. No differences according to the immunomodulatory therapy used were observed. For most of the deceased individuals, early interruption of anakinra or baricitinib had occurred at the time of their admission to the intensive care unit. CONCLUSIONS: Similar mortality is observed in patients treated with anakinra or baricitinib plus corticosteroids.

2.
Arterioscler Thromb Vasc Biol ; 36(10): 2068-77, 2016 10.
Article in English | MEDLINE | ID: mdl-27470510

ABSTRACT

OBJECTIVE: Dietary supplementation with polyunsaturated fatty acids has been widely used for primary and secondary prevention of cardiovascular disease in individuals at risk; however, the cardioprotective benefits of polyunsaturated fatty acids remain controversial because of lack of mechanistic and in vivo evidence. We present direct evidence that an omega-6 polyunsaturated fatty acid, dihomo-γ-linolenic acid (DGLA), exhibits in vivo cardioprotection through 12-lipoxygenase (12-LOX) oxidation of DGLA to its reduced oxidized lipid form, 12(S)-hydroxy-8Z,10E,14Z-eicosatrienoic acid (12(S)-HETrE), inhibiting platelet activation and thrombosis. APPROACH AND RESULTS: DGLA inhibited ex vivo platelet aggregation and Rap1 activation in wild-type mice, but not in mice lacking 12-LOX expression (12-LOX(-/-)). Similarly, wild-type mice treated with DGLA were able to reduce thrombus growth (platelet and fibrin accumulation) after laser-induced injury of the arteriole of the cremaster muscle, but not 12-LOX(-/-) mice, supporting a 12-LOX requirement for mediating the inhibitory effects of DGLA on platelet-mediated thrombus formation. Platelet activation and thrombus formation were also suppressed when directly treated with 12(S)-HETrE. Importantly, 2 hemostatic models, tail bleeding and arteriole rupture of the cremaster muscle, showed no alteration in hemostasis after 12(S)-HETrE treatment. Finally, the mechanism for 12(S)-HETrE protection was shown to be mediated via a Gαs-linked G-protein-coupled receptor pathway in human platelets. CONCLUSIONS: This study provides the direct evidence that an omega-6 polyunsaturated fatty acid, DGLA, inhibits injury-induced thrombosis through its 12-LOX oxylipin, 12(S)-HETrE, which strongly supports the potential cardioprotective benefits of DGLA supplementation through its regulation of platelet function. Furthermore, this is the first evidence of a 12-LOX oxylipin regulating platelet function in a Gs α subunit-linked G-protein-coupled receptor-dependent manner.


Subject(s)
8,11,14-Eicosatrienoic Acid/analogs & derivatives , 8,11,14-Eicosatrienoic Acid/pharmacology , Arachidonate 12-Lipoxygenase/blood , Blood Platelets/drug effects , Chromogranins/blood , Fibrinolytic Agents/pharmacology , GTP-Binding Protein alpha Subunits, Gs/blood , Platelet Activation/drug effects , Platelet Aggregation Inhibitors/pharmacology , Thrombosis/prevention & control , 8,11,14-Eicosatrienoic Acid/metabolism , Animals , Arachidonate 12-Lipoxygenase/deficiency , Arachidonate 12-Lipoxygenase/genetics , Blood Platelets/metabolism , Cell Adhesion Molecules/blood , Cyclic AMP/blood , Cyclic AMP-Dependent Protein Kinases/blood , Disease Models, Animal , Fibrinolytic Agents/metabolism , Humans , Mice, Inbred C57BL , Mice, Knockout , Microfilament Proteins/blood , Oxidation-Reduction , Phosphoproteins/blood , Phosphorylation , Platelet Aggregation/drug effects , Shelterin Complex , Signal Transduction/drug effects , Telomere-Binding Proteins/blood , Thrombosis/blood , Thrombosis/enzymology , Thrombosis/genetics , Time Factors
3.
Blood ; 124(14): 2271-9, 2014 Oct 02.
Article in English | MEDLINE | ID: mdl-25100742

ABSTRACT

Platelets are essential in maintaining hemostasis following inflammation or injury to the vasculature. Dysregulated platelet activity often results in thrombotic complications leading to myocardial infarction and stroke. Activation of the FcγRIIa receptor leads to immune-mediated thrombosis, which is often life threatening in patients undergoing heparin-induced thrombocytopenia or sepsis. Inhibiting FcγRIIa-mediated activation in platelets has been shown to limit thrombosis and is the principal target for prevention of immune-mediated platelet activation. In this study, we show for the first time that platelet 12(S)-lipoxygenase (12-LOX), a highly expressed oxylipin-producing enzyme in the human platelet, is an essential component of FcγRIIa-mediated thrombosis. Pharmacologic inhibition of 12-LOX in human platelets resulted in significant attenuation of FcγRIIa-mediated aggregation. Platelet 12-LOX was shown to be essential for FcγRIIa-induced phospholipase Cγ2 activity leading to activation of calcium mobilization, Rap1 and protein kinase C activation, and subsequent activation of the integrin αIIbß3. Additionally, platelets from transgenic mice expressing human FcγRIIa but deficient in platelet 12-LOX, failed to form normal platelet aggregates and exhibited deficiencies in Rap1 and αIIbß3 activation. These results support an essential role for 12-LOX in regulating FcγRIIa-mediated platelet function and identifies 12-LOX as a potential therapeutic target to limit immune-mediated thrombosis.


Subject(s)
Arachidonate 12-Lipoxygenase/metabolism , Blood Platelets/metabolism , Receptors, IgG/metabolism , 12-Hydroxy-5,8,10,14-eicosatetraenoic Acid/chemistry , Animals , Calcium/metabolism , Enzyme Activation , Humans , Mice , Mice, Inbred C57BL , Mice, Transgenic , Phospholipase C gamma/metabolism , Phosphorylation , Platelet Activation , Platelet Aggregation , Protein Kinase C/metabolism , Signal Transduction , Thrombosis/immunology
SELECTION OF CITATIONS
SEARCH DETAIL
...