Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Toxicology ; 504: 153783, 2024 May.
Article in English | MEDLINE | ID: mdl-38518840

ABSTRACT

Despite the wide application of graphene-based materials, the information of the toxicity associated to some specific derivatives such as aminated graphene oxide is scarce. Likewise, most of these studies analyse the pristine materials, while the available data regarding the harmful effects of degraded forms is very limited. In this work, the toxicity of graphene oxide (GO), aminated graphene oxide (GO-NH2), and their respective degraded forms (dGO and dGO-NH2) obtained after being submitted to high-intensity sonication was evaluated applying in vitro assays in different models of human exposure. Viability and ROS assays were performed on A549 and HT29 cells, while their skin irritation potential was tested on a reconstructed human epidermis model. The obtained results showed that GO-NH2 and dGO-NH2 substantially decrease cell viability in the lung and gastrointestinal models, being this reduction slightly higher in the cells exposed to the degraded forms. In contrast, this parameter was not affected by GO and dGO which, conversely, showed the ability to induce higher levels of ROS than the pristine and degraded aminated forms. Furthermore, none of the materials is skin irritant. Altogether, these results provide new insights about the potential harmful effects of the selected graphene-based nanomaterials in comparison with their degraded counterparts.


Subject(s)
Cell Survival , Graphite , Nanostructures , Reactive Oxygen Species , Graphite/toxicity , Graphite/chemistry , Humans , Cell Survival/drug effects , Reactive Oxygen Species/metabolism , A549 Cells , Nanostructures/toxicity , Nanostructures/chemistry , HT29 Cells , Skin Irritancy Tests/methods
2.
ACS Appl Mater Interfaces ; 16(7): 9293-9302, 2024 Feb 21.
Article in English | MEDLINE | ID: mdl-38324477

ABSTRACT

Aramids, renowned for their high-performance attributes, find applications in critical fields such as protective equipment, aerospace components, and industrial filters. However, challenges arise in scenarios in which frequent washing is impractical, leading to bacterial proliferation, especially in textiles. This study outlines a straightforward and scalable method for preparing aramid-coated textiles and films endowed with inherent bactericidal activity, achieved by reacting parent aramids with vanillin. The functionalization of the aramids with bactericide moieties not only preserved the high-performance characteristics of commercial aramids but also improved their crucial mechanical properties. Tensile tests revealed an increase in Young's modulus, up to 50% compared to commercial m-aramid, accompanied by thermal performance comparable to commercial m-aramids. The evaluation of these coated textiles as bactericidal materials demonstrated robust effectiveness with A parameters (antibacterial activity) of 4.31 for S. aureus and 3.44 for K. pneumoniae. Reusability tests (washing the textiles in harsh conditions) underscored that the bactericide-coated textiles maintain their performance over at least 5 cycles. Regarding practical applications, tests performed with reconstructed human epidermis affirmed the nonirritating nature of these materials to the skin. The distinctive qualities of these metal-free intrinsic bactericidal aramids position them as ideal candidates for scenarios demanding a synergy of high performance and bactericidal properties. Applications such as first responders' textiles or filters stand to benefit significantly from these advanced materials.


Subject(s)
Anti-Bacterial Agents , Staphylococcus aureus , Humans , Anti-Bacterial Agents/pharmacology , Textiles , Skin
3.
Sci Rep ; 13(1): 11846, 2023 07 22.
Article in English | MEDLINE | ID: mdl-37481626

ABSTRACT

The development of novel advanced nanomaterials (NMs) with outstanding characteristics for their use in distinct applications needs to be accompanied by the generation of knowledge on their potential toxicological impact, in particular, that derived from different occupational risk exposure routes, such as inhalation, ingestion, and skin contact. The harmful effects of novel graphene-metal oxide composites on human health are not well understood, many toxicological properties have not been investigated yet. The present study has evaluated several toxicological effects associated with graphene decorated with manganese oxide nanoparticles (GNA15), in a comparative assessment with those induced by simple graphene (G2), on human models representing inhalation (A549 cell line), ingestion (HT29 cell line) and dermal routes (3D reconstructed skin). Pristine and degraded forms of these NMs were included in the study, showing to have different physicochemical and toxicological properties. The degraded version of GNA15 (GNA15d) and G2 (G2d) exhibited clear structural differences with their pristine counterparts, as well as a higher release of metal ions. The viability of respiratory and gastrointestinal models was reduced in a dose-dependent manner in the presence of both GNA15 and G2 pristine and degraded forms. Besides this, all NMs induced the production of reactive oxygen species (ROS) in both models. However, the degraded forms showed to induce a higher cytotoxicity effect. In addition, we found that none of the materials produced irritant effects on 3D reconstructed skin when present in aqueous suspensions. These results provide novel insights into the potentially harmful effects of novel multicomponent NMs in a comprehensive manner. Furthermore, the integrity of the NMs can play a role in their toxicity, which can vary depending on their composition and the exposure route.


Subject(s)
Graphite , Nanoparticles , Nanostructures , Humans , Graphite/toxicity , Nanoparticles/toxicity , HT29 Cells
4.
Sens Actuators B Chem ; 379: 133165, 2023 Mar 15.
Article in English | MEDLINE | ID: mdl-36536612

ABSTRACT

The initial stages of the pandemic caused by SARS-CoV-2 showed that early detection of the virus in a simple way is the best tool until the development of vaccines. Many different tests are invasive or need the patient to cough up or even drag a sample of mucus from the throat area. Besides, the manufacturing time has proven insufficient in pandemic conditions since they were out of stock in many countries. Here we show a new method of manufacturing virus sensors and a proof of concept with SARS-CoV-2. We found that a fluorogenic peptide substrate of the main protease of the virus (Mpro) can be covalently immobilized in a polymer, with which a cellulose-based material can be coated. These sensory labels fluoresce with a single saliva sample of a positive COVID-19 patient. The results matched with that of the antigen tests in 22 of 26 studied cases (85% success rate).

5.
Sci Rep ; 12(1): 20991, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36471154

ABSTRACT

In the present study, a comparative human toxicity assessment between newly developed Mn3O4 nanoparticles with enhanced electrochemical properties (GNA35) and their precursor material (Mn3O4) was performed, employing different in vitro cellular models representing main exposure routes (inhalation, intestinal and dermal contact), namely the human alveolar carcinoma epithelial cell line (A549), the human colorectal adenocarcinoma cell line (HT29), and the reconstructed 3D human epidermal model EpiDerm. The obtained results showed that Mn3O4 and GNA35 harbour similar morphological characteristics, whereas differences were observed in relation to their surface area and electrochemical properties. In regard to their toxicological properties, both nanomaterials induced ROS in the A549 and HT29 cell lines, while cell viability reduction was only observed in the A549 cells. Concerning their skin irritation potential, the studied nanomaterials did not cause a reduction of the skin tissue viability in the test conditions nor interleukin 1 alpha (IL- 1 α) release. Therefore, they can be considered as not irritant nanomaterials according to EU and Globally Harmonized System of Classification and Labelling Chemicals. Our findings provide new insights about the potential harmful effects of Mn3O4 nanomaterials with different properties, demonstrating that the hazard assessment using different human in vitro models is a critical aspect to increase the knowledge on their potential impact upon different exposure routes.


Subject(s)
Irritants , Nanostructures , Humans , Irritants/toxicity , Skin Irritancy Tests/methods , Oxides , Nanostructures/toxicity
6.
J Inorg Biochem ; 226: 111663, 2022 01.
Article in English | MEDLINE | ID: mdl-34801972

ABSTRACT

Three neutral Pt(II) complexes containing 1-Methylimidazole and the antifungal imidazolyl drugs Clotrimazole and Bifonazole have been prepared. The general formula of the new derivatives is [Pt(κ2-(C^N)Cl(L)], where C^N stands for ppy = 2-phenylpyridinate, and L = 1-Methylimidazole (MeIm) for [Pt-MeIm]; L = Clotrimazole (CTZ) for [Pt-CTZ] and L = Bifonazole (BFZ) for [Pt-BFZ]). The complexes have been completely characterized in solution and the crystal structures of [Pt-BFZ] and [Pt-CTZ] have been resolved. Complexes [Pt-MeIm] and [Pt-BFZ] present higher cytotoxicity than cisplatin in SW480 (colon adenocarcinoma), A549 (lung adenocarcinoma) and A2780 (ovarian cancer) cell lines. [Pt-MeIm] shows the highest accumulation in A549 cells, in agreement with its inability to interact with serum albumin. By contrast, [Pt-CTZ] and [Pt-BFZ] interact with serum proteins, a fact that reduces their bioavailability. The strongest interaction with bovine serum albumin (BSA) is found for [Pt-BFZ], which is the least internalized inside the cells. All the complexes are able to covalently interact with DNA. The most cytotoxic complexes, [Pt-MeIm] and [Pt-BFZ] induce cellular accumulation in G0/G1 and apoptosis by a similar pathway, probably involving a reactive oxygen species (ROS) generation mechanism. [Pt-BFZ] turns out to be the most efficient complex regarding ROS generation and causes mitochondrial membrane depolarization, whereas [Pt-MeIm] induces the opposite effect, hyperpolarization of the mitochondrial membrane. On the contrary, the least cytotoxic complex, [Pt-CTZ] cannot block the cell cycle or generate ROS and the mechanism by which it induces apoptosis could be a different one.


Subject(s)
Antifungal Agents , Antineoplastic Agents , Coordination Complexes , Neoplasms , Platinum , A549 Cells , Antifungal Agents/chemical synthesis , Antifungal Agents/chemistry , Antifungal Agents/pharmacology , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Coordination Complexes/chemical synthesis , Coordination Complexes/chemistry , Coordination Complexes/pharmacology , G1 Phase/drug effects , Humans , Neoplasms/drug therapy , Neoplasms/metabolism , Platinum/chemistry , Platinum/pharmacology , Resting Phase, Cell Cycle/drug effects
7.
Inorg Chem ; 59(7): 4961-4971, 2020 Apr 06.
Article in English | MEDLINE | ID: mdl-32182052

ABSTRACT

A new family of neutral chiral cyclometalated platinum(II) complexes with formula [Pt(κ2-(C^N))Cl(κ1-(L))], where (C^N) = 2-phenylpyridinate and (L) = 2-(2-pyridyl)benzimidazole (L1) or (N-(CH2)-Ar-(2-(2-pyridyl)benzimidazole) ligands; (Ar = phenyl (L2), naphthyl (L3), pyrenyl (L4)), have been synthesized and completely characterized. The unexpected κ1 coordination mode of the 2-(2-pyridyl)benzimidazole-derived ligands has been confirmed by spectroscopic techniques and X-ray diffraction. The aromatic moieties on the ligands in the new platinum(II) complexes have a remarkable influence on the cytotoxicity and in the binding mode to DNA. [Pt-L1]-[Pt-L4] complexes internalized more than cisplatin in the SW480 cancer cells even though only [Pt-L1] and [Pt-L2] display high cytotoxicity. 1H NMR and 13P{1H}NMR pointed out that [Pt-L1] and [Pt-L2] complexes bind covalently to dGMP, while the electrophoresis assays and CD experiments indicate that only [Pt-L2] is able to covalently interact with DNA, inducing the same conformational changes in the plasmid DNA as cisplatin. Although the complex [Pt-L4] intercalates into DNA, probably through the pyrenyl moiety, no biological activity is observed.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antineoplastic Agents/pharmacology , Benzimidazoles/pharmacology , Coordination Complexes/pharmacology , Acinetobacter baumannii/drug effects , Animals , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/metabolism , Antineoplastic Agents/chemical synthesis , Antineoplastic Agents/metabolism , Benzimidazoles/chemical synthesis , Benzimidazoles/metabolism , Cattle , Cell Line, Tumor , Coordination Complexes/chemical synthesis , Coordination Complexes/metabolism , DNA/chemistry , DNA/metabolism , Drug Screening Assays, Antitumor , Enterococcus faecium/drug effects , Humans , Ligands , Platinum/chemistry , Pseudomonas aeruginosa/drug effects , Staphylococcus aureus/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...