Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Type of study
Publication year range
1.
J Ophthalmol ; 2014: 510285, 2014.
Article in English | MEDLINE | ID: mdl-24672707

ABSTRACT

Age-related macular degeneration (AMD) is the leading cause of blindness in the Western world. With an ageing population, it is anticipated that the number of AMD cases will increase dramatically, making a solution to this debilitating disease an urgent requirement for the socioeconomic future of the European Union and worldwide. The present paper reviews the limitations of the current therapies as well as the socioeconomic impact of the AMD. There is currently no cure available for AMD, and even palliative treatments are rare. Treatment options show several side effects, are of high cost, and only treat the consequence, not the cause of the pathology. For that reason, many options involving cell therapy mainly based on retinal and iris pigment epithelium cells as well as stem cells are being tested. Moreover, tissue engineering strategies to design and manufacture scaffolds to mimic Bruch's membrane are very diverse and under investigation. Both alternative therapies are aimed to prevent and/or cure AMD and are reviewed herein.

2.
J Control Release ; 158(3): 443-50, 2012 Mar 28.
Article in English | MEDLINE | ID: mdl-21971294

ABSTRACT

The field of cell microencapsulation is advancing rapidly. Particle size plays a critical role in terms of biocompatibility and limits decisively its applicability. Producing reduced size microcapsules involves broadening the possibilities to employ this technology in the treatment of many disorders. Nervous system diseases (NSD) represent a clear example of that. This work describes the feasibility of reducing the size of alginate-poly-L-lysine-alginate (APA) microcapsules up to 100 µm in a highly monodisperse way using the novel Flow Focusing technique. C(2)C(12) myoblasts genetically engineered to express the triple reporter gene thymidine kinase-green fluorescent protein-luciferase (TGL) and secrete vascular endothelial growth factor soluble receptor 2 (VEGFR2, also known as KDR) were encapsulated for further characterization. Resulting new particles were assayed in vitro to explore whether their functionality might be affected due to the physicochemical changes arising from such dramatic size reduction. Not only were negative effects at this level not noticed in terms of cell viability, cell proliferation and KDR secretion, but once again the suitability of APA microcapsules was also reinforced against other microcapsule designs. Furthermore, the fully viable and functional biosystems were successfully administered in the intravitreous space of rats, where the activity of encapsulated cells was monitoring over 3 weeks.


Subject(s)
Alginates/administration & dosage , Capsules/administration & dosage , Polylysine/analogs & derivatives , Animals , Cell Line , Genes, Reporter/genetics , Green Fluorescent Proteins/genetics , Intravitreal Injections , Luciferases/genetics , Mice , Mice, Inbred C3H , Polylysine/administration & dosage , Rats , Rats, Wistar , Thymidine Kinase/genetics , Transfection , Vascular Endothelial Growth Factor Receptor-2/genetics , Vascular Endothelial Growth Factor Receptor-2/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...